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Abstract

The data on maternal anaemia is highly skewed in sub-Saharan Africa, with some

women showing higher and others lower levels of Haemoglobin (Hb). A thorough

analysis of maternal anaemia data is crucial for identifying effective strategies, but

success depends on the choice of model and its ability to handle outliers. The study

evaluated mean, quantile, and robust regression methods, along with diagnostic

statistics, on maternal Hb data in Malawi. The analysis used simulations and real

Hb data from the 2015-16 Malawi Demographic and Health Survey, calculated with

STATA version 17. The simulation results revealed that in large sample sizes, outlier

detection rates were similar across linear, quantile, and robust regression models.

Further, all models showed similar accuracy without outliers. For datasets with

outliers, robust and quantile regression (1st and 2nd quartiles) provided the most

accurate estimates with smaller biases compared to linear and higher percentile

models. The real data analysis showed that directions of estimates were similar

across the models, but the linear, robust M- and MM-estimator models produced

estimates with smallest standard errors. The estimated average Hb level for women

was 13.7 g/dl. Residing in rural area, higher body mass index, having primary and

secondary education were linked to high Hb levels. While older pregnancy, drinking

from safe water sources, and living in a rich household were associated with low Hb

levels. The model residuals detected considerable amount of outliers in the data,

mostly they were women with extremely low Hb levels. Diverse statistical methods

can strengthen evidence of maternal anaemia in sub-Saharan Africa, supporting the

determination of effective interventions. Policymakers in Malawi should develop

strategies to increase Hb levels in pregnant women, especially in their second and

third trimesters, and other marginalized groups.
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CHAPTER ONE

INTRODUCTION

1.1 Background to Maternal Anaemia

Anaemia is a blood disorder characterized by low concentration of haemoglobin, the pro-

tein responsible for carrying oxygen in red blood cells (Di Renzo et al., 2015; Meena et

al., 2019). It is a significant public health problem in many developing countries, affecting

about 571 million women of reproductive age and 32 million pregnant women worldwide

(Stevens et al., 2022; Kassebaum et al., 2016; Chaparro & Suchdev, 2019; Pasricha &

Moir-Meyer, 2023). The World Health Organization (WHO)-defined haemoglobin (Hb)

cut-offs, specific to age, sex and pregnancy status, are most widely used to diagnose ane-

mia (Ohuma et al., 2023). For example, the World Health Organisation (WHO) considers

as anaemic the Hb level of less than 12 grams/decilitre in non-pregnant women aged 15-

49 years, 11 grams/decilitre during the first and third trimesters of pregnancy, and 10.5

grams/decilitre in the second trimester of pregnancy (Kamruzzaman, 2021; Alem et al.,

2023; Young et al., 2023).

Anaemia is often categorised based on its cause. Inadequate consumption of micronu-

trients, such as iron, folate, riboflavin, and vitamins A, B12, and C necessary for blood

formation, is a common cause of nutritional anaemia (Ali et al., 2023; Shi et al., 2021).

A condition known as nutritional iron deficiency (ID) is brought by inadequate dietary

iron intake, increased iron demand, iron loss, and low iron bioavailability from staple

foods. In global context, ID is considered the major contributor to the burden of WRA

anemia (Ali et al., 2023). Additional factors contributing to anaemia include heavy men-
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struation, growing children’s and pregnant women’s higher iron requiremnets. Further-

more, other factors are chronic infections (including HIV, TB, hookworm, and malaria),

and disorders affecting the body’s ability to absorb, transport, and store iron, such as

haemoglobinopathies (Karami et al., 2022; Chaparro & Suchdev, 2019). About half of

all female anemaia are caused by ID, which also serves as a precursor to iron deficiency

anaemia (IDA), one of the main causes of Years Lived in a Disabled state (YLDs) (Cha-

parro & Suchdev, 2019). Anemia caused 52.0 million YLDs in 2021 (Kinyoki et al., 2021)

and contributed to 58.6 million YLDs worldwide in 2019 (Kamruzzaman, 2021).

Globally, it is estimated that above a half billion Women of Reproductive Age (WRA)

are anaemic representing about 33 percent of maternal women (Stevens et al., 2022;

Pasricha & Moir-Meyer, 2023). The highest prevalence of maternal anaemia is in Lower

and Middle-Income Countries (LMICs) with WRA and children having higher risk than

adults (Kinyoki et al., 2021; Safiri et al., 2021; Pasricha & Moir-Meyer, 2023; Hasan et

al., 2022; Moya et al., 2022). Implying that about one third of the women aged 15 to 49

years are anaemic worldwide.

Globally, West and Central Africa, and South Asia are the three regions that contribute

the most to anaemia, affecting about 40 percent of maternal women (Alem et al., 2023).

In a global context, there has been marginal progress on reduction of anaemia prevalence

among WRA especially in LMICs (Chaparro & Suchdev, 2019). Maternal anaemia preva-

lence remained almost constant, from 31 percent in 2000 to 30 percent in 2019 (Young

et al., 2023; Stevens et al., 2022). And according to Karami et al. (2022); Pasricha &

Moir-Meyer (2023), in 2021, the prevalence of anaemia among WRA was 33.7 percent,

compared to 11.3 percent for males. According to Chanimbe et al. (2023), in Malawi
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the prevalence of maternal anaemia is at 29.8 percent. Implying that about one-third of

Malawian maternal women are anaemic.

It is well known that anemia during pregnancy increases the risks of having miscarriages,

intrauterine growth retardation, preterm births, still birth, babies with Low Birthweight

(LBW), neonatal and maternal mortality (Ali et al., 2023; Young, 2018). In developing

nations, anaemia is a major driver in maternal mortality and adverse pregnancy outcomes

(Ali et al., 2023). According to published research, there is a direct correlation between

anaemia and maternal mortality, with every 10 millilitre rise in haemoglobin causing a 30

percent reduction in maternal deaths (Ali et al., 2023; Black et al., 2013; Young, 2018)

Nutrition dificiency especially iron deficiency is recognized as crucial risk factor for anemia

among WRA (Ali et al., 2023). There is high risk of iron deficiency due to pregnancy as

the iron requirement triples due to the growth of the fetoplacental units and the increase in

the number of maternal red blood cells (Shi et al., 2021; Ali et al., 2023). Iron deficiency

accounts for at least 60 percent of anemia (Kassebaum et al., 2016). With an aim to

control the effect of anemia, in 2020 WHO proposed distribution of iron suppliments to

all WRA in regions with prevalence of above 20 percent (Ali et al., 2023). Because of

this, pregnant women in the majority of low- and middle-income nations frequently take

iron supplements to prevent and treat iron deficiency and anaemia during pregnancy. The

current global control initiatives for maternal anaemia include provision of iron and folic

acid supplements to women in regions having anaemia prevalence of above 20 percent (Ali

et al., 2023).

Despite implementation of interventions aimed at reducing maternal anemia, burden of

maternal anemia is still high in sub-saharan Africa, at 41.7 percent, which derails safe
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motherhood campaign efforts in the region (Karami et al., 2022; Chaparro & Suchdev,

2019; Kassebaum et al., 2016). Effectively addressing anaemia in all its forms requires a

firm understanding of the unique determinants of anaemia in a particular setting, includ-

ing by subnational area (Kinyoki et al., 2021). Since anemia is significantly associated

with morbidity and mortality, programs, strategies, and interventions targeted at lower-

ing WRA anaemia have the potential to improve the general health outcomes of children

as well as WRA. Therefore, studies that can bring in evidence on the determinants and

drivers of WRA anemia reduction in LMICs can be supportive for development of appro-

priate interventions.

1.2 Statistical methods used to analyse maternal anaemia data

There are a number of studies in literature that employed regression analysis to determine

the factors associated with maternal anaemia. For example, a study done by Alem et al.

(2023) analysed data from the Demographic and Health Survey (DHS) in 46 LMICs during

period of 2010 to 2021. The study involved 881,148 WRA with an aim of assessing the

prevalence and factors associated with anaemia among WRA in LMICs. The proportions

between pregnant and non-pregnant women were assessed using descriptive statistics. In

order to determine the factors associated with anaemia in WRA, multilevel binary logistic

regression was used.

The results from Alem et al. (2023) study found a high prevalence of 45.20 percent of ane-

mia among pregnant women and 39.52 percent prevalence among non-pregnant women in

LMICs. The study reported that these estimates were higher and far from the global tar-

get (less than or equal to 15.2 percent by 2025), comparable with previous studies (Kinyoki

et al., 2021; Sun et al., 2021; Owais et al., 2021). The results further showed that Edu-
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cation status, wealth status, family size, media exposure and residence were significantly

factors associated with anaemia in both pregnant and non-pregnant women. The identi-

fied factors are similar to previous studies, for example a study in Etheopia (Geta et al.,

2022), Pakistan (Ullah et al., 2019) and Nepal (Acharya et al., 2022). The study recom-

mended global commitment and movement to reduce the prevalence of anaemia need to

be revisited and redesigned for current circumstance.

Another study done by Sunuwar et al. (2020) analyzed DHS data between 2011 and 2016

from seven sampled Southern and Southeastern Asia countries (Bangladesh, Cambodia,

India, Maldives, Myannar, Nepal and Timor-Leste). A total of 726,164 WRA were in-

volved in this study with a purpose of identifying prevalence and factors associated with

anaemia among WRA in seven selected South and Southeast Asian countries. Descrip-

tive statistics of proportions among WRA were used to etimate prevalence. Multiple

linear regression models were performed to identify the factors significantly associated

with anaemia. The study reported multicollinearity among independent variables using

variable inflation factors in order to prevent statistical bias.

The study by Sunuwar et al. (2020) reported overall WRA anemia prevalence of 52.5 per-

cent, ranging from 22.7 percent in Timor-Leste to 63 percent in Maldives. Results from

multiple logistics regression showed that age group, education status, wealth status, toilet

type, water source, BMI and births in last five years are significant factors associated with

anaemia. It suggested that young women (15-24 years), those with primary or no educa-

tion, poorest wealth, without toilet facilities, not improved water source, underweight and

with more than one child in last five years have significantly higher likelihood of anaemia.

Teshale et al. (2020) studied 101,524 WRA using DHS data conducted between 2008 and
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2018 in ten eastern African countries with an aim of assessing prevalence and associated

factors of anaemia among WRA in eastern Africa. The ten Eastern African countries

involved in the study were Burundi, Ethiopia, Malawi, Mozambique, Rwanda, Tanzania,

Uganda, Zimbabwe, Madagascar and Zambia. Descriptive statatics of proportions were

used to report the unadjusted and adjusted prevalence of anaemia. Multilevel mixed-

effects generalized linear model, using Poisson regression, was used to identify factors

significantly associated with anaemia.

This study by Teshale et al. (2020) reported WRA anaemia prevalence of 34.85 percent

in eastern Africa ranging from 19.23 percent in Rwanda to 53.98 percent in Mozambique.

Multivariable level analysis showed that age, education, marital status, occupation, house-

hold wealth status, sex of household head, type of toilet facility, source of drinking water,

ever had a terminated pregnancy, parity, household size, perception of distance from the

health facility, pregnancy status and residence were significant determinants of anaemia

among WRA. The results were consistent with other previous studies (Adamu et al., 2017;

Soofi et al., 2017). The study recommended that with special attention on younger women,

those with low socioeconomic status, unimproved toilet facility, unimproved drinking wa-

ter source and pregnant women could reduce burden of anemia in WRA.

Talukder et al. (2022) analyzed DHS data for the period of 2017 to 2018 collected from

Albania country located in Southern Europe with an aim of identifying the potential risk

factors of anaemia among Albanian WRA. A total of 15,000 WRA were involved in the

study. The study employed a quantile regression model to identify the determinants of

anaemia.

The results from Talukder et al. (2022) study showed that women’s education level, wealth
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index, place of residence, contraceptive method use during pregnancy, BMI, and source

of drinking water are the significant risk factors of anaemia among WRA. The results

agreed with results from previous studies (Adamu et al., 2017; Shi et al., 2021)It was

recommended from the study that effective strategies aiming at preventing and controlling

anemia should focus on women living in the rural areas, underweight, not higher educated,

not using contraceptives during pregnancy and drinking unsafe water.

A study conducted by Acharya et al. (2022) analysed Nepal country DHS data for 2006,

2011 and 2016 which involved a total of 23,149 WRA with an aim to assess trends of

anaemia prevalence and determinants of anemia among WRA. Descriptive (frequencies

and percentages), bivariate (cross-section with chi-square test), and multivariate analysis

(binary logistics regression) were performed to address the study purpose. The results

showed an inconsistent trends of anaemia prevalence among the survey years, with 36

percent in 2006, 35 percent in 2011 and 41 percent in 2016.

According to Acharya et al. (2022), age of women, place of living, wealth status, smoking

habit, exposure to radio are significant predictors for having anaemia. The results were

consistent with previous study (Teshale et al., 2020). The study recommended that the

policymakers should re-evaluate and revise existing strategies of combating anemia as

these seemed to be ineffective in reducing prevalence of anaemia.

1.3 Robust Regression Methods

George E.P. Box, a statistician, introduced the term "robustness" where robust tech-

niques are those that are insensitive to the departures from the underlying assumptions

(Grynovicki et al., 1983). Robust regression method is a technique used to analyze data
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that is contaminated with outliers and minimize their impact on the coefficient estimates

(Bary, 2017; Kalina, 2015; Ayinde et al., 2015; Ritschard & Antille, 1992; Denby & Mal-

lows, 1977).

Ordinary least squares (OLS) and maximum likelihood (ML), widely used methods of

estimating linear regression parameters, base their predictions on the assumptions such

as normality and constant variance σ2 of the response variable on the regression structure

(Jajo & Hussain, 1989). Therefore, OLS and ML have the property of providing ‘best’

unbiased estimators when the error has a Gaussian distribution. However, it is recognized

that outliers may have an unusually large influence on the OLS and ML estimators,

outliers may push the line of best ’fit’ too much in their direction (Jajo & Hussain, 1989;

Adichie, 1967; Gray, 1989). The risks posed by the presence of outliers in OLS and ML

estimations are currently, nevertheless, widely recognized (Rousseeuw & Leroy, 2005).

Therefore, when there are outliers and extreme observations in the data set, OLS and

ML methods produce inaccurate estimates as unusual observations are sensitive to these

approaches (Rousseeuw & Leroy, 2005). In such data sets, using OLS method to estimate

regression parameters may yield inaccurate conclusions.

In the past 50 years, OLS and ML alternatives, also referred to as "robust" regression

techniques, have attracted more attention (Jajo, 2005; Andersen, 2008). These methods

are mainly aimed to provide stable results in the presence of outliers (Jajo, 2005). Recent

investigations have concentrated on robust approaches, all of which were inspired by the

theories of Hampel (1974) (Bagheri et al., 2010). Modern robust regression techniques

can be quite helpful in instances where the aim is to understand how a random variable y

is related to a group of p predictor variables. One reason is that even one outlier among
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the values or one unusual observation in the dataset can have a significant impact on

the parameter estimation of a typical linear model using OLS and ML methods (Wilcox,

1996). Another reason is that modem robust methods can be much more efficient than

OLS and ML estimation methods yet maintain good efficiency under the ideal conditions

of normality and a homoscedastic error term (Kalina, 2015).

Robust regression methods are particularly well-suited for real-world datasets that may

contain noise or anomalies, as evidenced by the literature (Kalina, 2015). These meth-

ods can be used as alternative, effective models to manage outliers and other deviations

from the assumptions of classical OLS and ML estimation regression methods (Denby &

Mallows, 1977; Kalina, 2015; Ritschard & Antille, 1992). The goal of robust analysis is

to fit a regression model to the bulk of the data prior to identifying outliers as points

with large residuals from the robust solution (Jajo & Hussain, 1989). These methods

down weight the influence of outliers, giving more reliable estimates of the relationships

between variables (Adichie, 1967).

Some commonly used robust regresstion estimators include M estimators, MM estimators,

LTS estimators, and S estimators (Ayinde et al., 2015; Chen, 2002; Wilcox, 1996). These

have been discussed in details in Chapter Two.

1.4 Diagnostic Statistics

A model’s diagnostic statistics are a set of measures calculated to identify unusual or

influential observations in the fitted model (Bagheri et al., 2010). They play a vital role in

assessing the quality and fit of the regression model (Ayinde et al., 2015). These diagnostic

tools identify potential issues such as influential observations or model misspecification,
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allowing to make necessary adjustments for more accurate results (Ayinde et al., 2015;

Gray, 1989). These techniques usually detect outliers that go masked in a residual-only

analysis (Gray, 1989).

The fundamental techniques of Cook and Weisberg in 1982 were the beginning of a great

deal of effort on various techniques to find these unusual points (Bagheri et al., 2010).

Many strategies have been proposed during the last thirty decades to identify outliers;

these procedures or methodologies are often referred to as diagnostics (Jajo, 2005). The

commonly used diagnostic statistics include; Cooks’ distance measure, The Welsch-Kuh

distance (DFFITS) and DFBETAS (Ayinde et al., 2015; Kannan & Manoj, 2015; Türkan

et al., 2012). These methods have been discussed in Chapter Two.

Huber in 1991 took on the task of clarifying the seemingly ambiguous relationship between

robustness and diagnostics, which is often viewed as hostile (Jajo, 2005). It is believed

that the two techniques to data analysis are complimentary and equally important. Both

robustness and diagnostics look at the outliers’ problem from different perspectives, and

the more ambiguous is the problem, more vital it is to look at it from all angles (Jajo,

2005). Therefore, despite robust regression methods providing a remedy to fitting prob-

lem, the need for regression diagnostics remain as they often provide useful information

(Gray, 1989).

The classical regression methods proposed the deletion of identified outliers prior to fitting

model to the suitable dataset, but they did not address the question of how much deletion

is permissible (Rousseeuw & Leroy, 1988). In case of too many outliers, this leads to

deletion of more observations (yet not all influential) giving biased results that cannot

be interpreted (Türkan et al., 2012). It is therefore, widely acknowledged that unusual
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observation in regression analysis requires specific attention. Gray (1989) emphasized that

unusual observations often provide useful information and need to be used in collaboration

with familiar skills and knowledge of analysis. Thus, even if robust regression methods

provide a remedy to fitting problem, the need for regression diagnostics remains (Ritschard

& Antille, 1992). The detection of unusual observation is an important problem in model

building, inference and analysis of a regression model (Ayinde et al., 2015). Therefore,

the use of model diagnostics is necessary for both classical and robust regression methods.

1.5 Statistical research gaps in the analysis of maternal anaemia

data

Understanding the factors associated with WRA prevalence of anaemia is fundamental

to reduce the world burden of anaemia, which is a public health problem worldwide.

Identifying and implementing strategies focusing on the determinants of anaemia among

WRA is key to address the global challenge of anaemia which leads to high morbidity and

mortality in WRA wordwide. Regression analysis is one of the important statistical tool

widely used to identify determinants and drivers of anaemia in WRA. There are numerous

studies in literature that reported the factors associated with maternal anaemia using

regression analysis. However, some analytical methods have been prematurely carried

out without exhausting all that was required to understand the data at hand.

For example, in a study by Alem et al. (2023) reviewed in section 1.2, multilevel binary

logistics regression was applied to study risk fators of maternal aneamia. However, the

study never performed the model diagnostic statistics to assess the quality and fit of

the best regression model. This could have helped to identify influential observations
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or model misspecification and eventually allowing for necessary adjustments for more

accurate results (Ayinde et al., 2015; Rousseeuw & Leroy, 1988). Therefore, it is not

known whether the dataset had influential points that warranted special attention for

improvement of the model.

Another study by Sunuwar et al. (2020) also reviewed in section 1.2 fitted multiple logistics

regression model to identify factors associated with maternal aneamia. However, this

study did not perform the model diagnostic statistics which would have helped to evaluate

the validity and reliability of the model. These statistics could have detected outliers and

influential data points that could affect the model’s accuracy for further improvement of

the model.

The study by Teshale et al. (2020), also reviewed in section 1.2, used multilevel mixed-

effects generalized linear model to study risk factors of maternal aeamia. Although Linear

mixed models provides best unbiased prediction in analysis of sample surveys, designed

experiments and data with repeated measurements, can be influenced by outlying ob-

servations (Sinha, 2004). Therefore, examination of the outliers on mixed effects and

variance component parameter estimates using model diagnostic statistics was necessary

for possible attention to unusual observations. However, this study ignored the model

diagnostic assessment. To address the concern of having unusual observations in the data

set which could have affected the accuracy of the results, the study could have incorpo-

rated Robust statistics and report on robust standard errors. By incorporating robust

statistics in GLMMs, study could have obtained more accurate and reliable estimates of

the fixed effects, even in presence of influential observations in data set (Koller, 2016; Yau

& Kuk, 2002).
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Another study by Talukder et al. (2022) reviewed in section 1.2 studied risk factors of

maternal aneamia using quantile regression model, which provide better estimates than

classical regression when the data have lot of outliers in the conditional distribution (Ro-

driguez & Yao, 2017; Waldmann, 2018). Despite robustness of the Quantile regression

model (Waldmann, 2018), it is highly recommended that robust methods should go to-

gether with regression diagnostics as they provide useful information (Gray, 1989). How-

ever, this study did not report on the regression diagnostics for additional information

about influential data points. Regression diagnostics incorporation could have given more

insights about WRA anaemia data.

Despite several studies reporting that model diagnostic statistics and robust regression

methods help to detect unusual observations in the linear fitted model (Ayinde et al.,

2015; Ronchetti & Huber, 2009; Rousseeuw & Leroy, 2005), there is absence/limitations

of studies that applied these methods on maternal anaemia data to observe their perfor-

mance. Often as the case, these studies fit these models with an assumption that these

methods are robust enough in presence of unusual observations. This may not be true.

Therefore, it’s unclear, though, if their application provide comparable quality in the es-

timates of risk factors of maternal anaemia. Thus, there is need to evaluate performance

of robust regression techniques and model diagnostics statistics when applied to the same

data.

1.5.1 Problem statement

The maternal anaemia data are highly skewed in low and middle income countries, with

some women having extreme measurements, and thus some of the previous studies sug-

gested using nonparametric quantile regression to analyse such data (Talukder et al.,
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2022). However, less attention has been paid in previous studies in sub-Saharan Africa

to accounting for the outlier Haemoglobin outcomes in the analysis of such data. This

study therefore applies mean, quantile, and robust regression and their diagnostic statis-

tics to study the unusual mothers to anaemia in Malawi. An outlier observation is one

that appears to deviate markedly from other data points of the sample in which it occurs

(Kaombe & Manda, 2023b). For the data that are contaminated with outliers, robust

regression technique is known to achieve high accuracy of estimation (Andersen, 2008).

Specifically, the research assess sensitivity and resistance to outlier observations among

the mean, quantile and robust regression models when applied to both simulated data

and the real maternal anaemia from the 2015-16 Malawi demographic and health survey.

Ignoring the impact of outliers in regression estimation leads to biased conclusions from

a study (Kaombe & Manda, 2023b,a; Kaombe, 2024).

1.6 Study objectives

1.6.1 General objective

• To assess performance of mean, quantile and robust regression methods and diag-

nostics statistics when analysing maternal anaemia data in Malawi

1.6.2 Specific objectives

1. To assess efficiency of estimates from mean, quantile and robust regression models

using both simulations and real data

2. To assess sensitivity to outlier observations by mean, quantile and robust regression

models of estimates from mean, quantile and robust regression methods using both
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simulations and real data

3. To examine sensitivity to influential observations by mean, quantile and robust

regression models of estimates from mean, quantile and robust regression methods

using both simulations and real data

1.7 Significance of the study

Maternal anaemia remains one of the serious causes of maternal mortality in sub-Saharan

Africa (Stevens et al., 2022; Owais et al., 2021; Kinyoki et al., 2021; Chaparro & Suchdev,

2019). Sub-Saharan Africa has average maternal anaemia prevalence of 41.7 percent,

which hinders efforts to promote safe reproductive health (Karami et al., 2022; Chaparro

& Suchdev, 2019; Kassebaum et al., 2016). Malawi, like other countries in sub-Saharan

Africa, is also dealing with a high prevalence of maternal anaemia, currently at 29.8

percent (Chanimbe et al., 2023), which raises concerns about the country’s ability to

achieve the global target of 15.2 percent or less by 2025 (Kinyoki et al., 2021; Sun et

al., 2021). Effectively addressing maternal anaemia requires a comprehensive analysis

of the data to identify evidence-based strategies that can work (Kinyoki et al., 2021).

The persistence of this health outcome in women means that additional interventions are

required to reverse the trend.

This study is significant as it aligns with the Global Technical Strategy for Malaria 2016-

2030, aiming to reduce malaria incidence and mortality by 2030, and supports Sustainable

Development Goal 3, specifically Target 3.1, which focuses on reducing the global mater-

nal mortality ratio to less than 70 per 100,000 live births by 2030. In Malawi, Presidential

Initiative on Maternal Health and Safe Motherhood launched in 2012 emphasize improv-
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ing maternal health services, which are crucial in combating malaria’s impact on maternal

health (Walsh et al., 2018). By addressing malaria, this study contributes to achieving

these global and national health targets. Therefore, use of proper statistical analysis

methods for such data will contribute in unearthing essential features of this health prob-

lem in the region. This will in turn invite right interventions and policies to deal with this

health issue. This research will therefore be crucial in contributing evidence-based data

on appropriate statistical techniques that could be applied to analyse maternal anaemia

data, following thorough analyses using both simulations and actual applications on real

data sets that will be undertaken.

1.8 Thesis structure

This thesis is structured as follows. In chapter two, an overview of diagnostic statistics

and robust regression is presented. In chapter three, study methodology in data and

the statistical methods that were applied and their justification. The methods section

also presents the simulation design that was carried out to compare the robust regression

and diagnostic statistics in this study. Chapter four, presents the results from both

simulations and applications of the statistical methods involved. Finally, chapter five

presents a unifying discussion of the findings, limitation and conclusion.
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CHAPTER TWO

REVIEW OF MEAN, QUANTILE, AND

ROBUST REGRESSION METHODS

2.1 Mean regression methods

Mean regression methods are statistical techniques used to model the relationship between

a dependent variable and one or more explanatory variables by estimating the mean of

the dependent variable based on the values of the independent variables (Sarstedt et

al., 2019). The objective of using mean regression methods is to estimate a continuous

normal response variable based on known variables. Mean regression is versatile and

widely applicable in various fields where researchers seek to understand and quantify

the relationship between variables (Sarstedt et al., 2019). Additionally, the investigator

normally evaluates the estimated relationship statistical significance, or the degree of

confidence that the true relationship is near to the estimated relationship. Some commonly

used regression methods in the modellling of maternal anaemia includes; Linear model

and generalized linear model

2.1.1 Linear model

Rousseeuw & Leroy (2005) provides the formal definition for linear regression model. The

model assumes a linear relationship between the predictors and the response variable,

applicable when the response variable is continuous and normally distributed.

Let yi be the continuous random variables and Xi, for i = 1, 2..., ρ be the ρ covariates,
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then multiple linear regression model is given by:

Yi = Xijβj + εi, (1)

where Yi is the response measured on a ratio scale on the i-th subject,Xij = (1, Xi1, Xi2, ..., Xip)

is a row vector of measurements for fixed proxy variables on the i-th subject, βj =

(β0, β1, β2, ..., βp)T is a column vector of corresponding fixed effects of the variables X

on Y . The term εi represents the measurement error for the outcome of the i-th individ-

ual. The responses Yi from different measurements are assumed to be indendently and

identically distributed (Peña & Slate, 2006). In addition, it is assumed that εi ∼ N(0, σ2).

For this reason, the relationship between the covariates X and Y is on average of Y , i.e.

EYi|Xij. The inference techniques have to be applied at each case to yield accurate

case-wise predictions.

For the linear model in equation 1, the standard set of underlying assumptions as specified

by numerous studies Peña & Slate (2006); Verran & Ferketich (1987); Poole & O’Farrell

(1971) include; linearity, normality, nonrelatedness (autocorrelation), homoscedasticity

(constant variance) and independent variables without measurement error

The first required assumption in the linear model is linearity, linear relationship between

dependent and independent variables. This requires that the relationships between Y and

each of the independent variables Xi are linear in the parameters of the specific functional

form chosen. According to Peña & Slate (2006), the mathematical representation of the

assumption is given by µi = EYi|X = β(i)xi, whereXi is the i-th row of X. This assumption

is ascertained if the residuals show no evidence of departure from linearity, residual scatter

plot is around zero (Verran & Ferketich, 1987; Sevier, 1957).
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Homoscedasticity is another required assumption. Linear model assumes constant vari-

ance of the conditional distribution. Peña & Slate (2006) provide the formal mathematical

representation of the assumption, V ar(Yi|X) = σ2, where σ2 is the standard deviation

and i = 1, 2, . . . , n. The residual analysis procedure is used to test this assumption. The

assumption holds when the residual variance is equal at all points of the predicted depen-

dent variable (Thompson, 1982; Verran & Ferketich, 1987). This can be ascertained by

studying the pattern of the errors’ scatter plot against the predicted values (Sevier, 1957)

Third assumption is uncorrelatedness, the values of µ are serially independent. This

assumes that the values of the mean are independent of each other and their covariance

is zero. Such that the error from one observation does not affect (or is independent)

the error obtained from another observation. The assumption is formally defined by the

mathematical representation, cov(Yi, Yj|X) = 0 for i not equal to j (Thompson, 1982).

This is achieved if the residuals are independent.

Fourth assumption is Normality distribution of error term (residuals). According to Poole

& O’Farrell (1971), this assumes that the dependent variable, (Y1, Y2, . . . , Yn)|X has a

normal conditional distribution. This assumption is achieved if the residuals (error term)

are approximately normally distributed, N(0, σ2In), In is identity matrix of size n by

n (Verran & Ferketich, 1987). Testing the normality assumption in linear regression is

essential to ensure the validity of statistical inferences drawn from the model.

According to numerous studies Peña & Slate (2006); Thompson (1982); Sevier (1957),

residual analysis, Shapiro-Wilk Test and graphical methods are some common methods

used to test the normality assumption. Residual analysis is one of the most common ways

to test for normality in linear regression is by examining the distribution of residuals

19



(errors) from the regression model. You can create a histogram or a Q-Q plot of the

residuals and compare it to a normal distribution. Shapiro-Wilk test is statistical test

assesses whether a sample comes from a normally distributed population (Khatun et

al., 2021). In linear regression, you can apply this test to the residuals to determine if

they follow a normal distribution. Graphical methods are visualization tools such as a

normal probability plot or a density plot which can help assess the normality assumption

visually. These methods helps to determinate whether the normality assumption holds

for the residuals in the model. If normality is violated, transformations or non-parametric

regression techniques may be considered (Fox, 2002)

The fifth assumption requires that independent variables must be without measuremnet

error. It assumes that each value of independent variables, Xi and dependent variable,

Y is observed without measurement error. According to Poole & O’Farrell (1971), this

assumption maybe partially relaxed to say that Xi must be without measurement error.

The simplest case is when the there is one explanatory variable in the model, and the

model is considered as a simple linear regression

2.1.2 Generalized Linear Model (GLM)

Generalized Linear Models (GLMs) extend linear model to accommodate different types

of response variables, for example, binary, count or exponential and categorical, that are

nonnormal and has nonhomogeneous variance. Nelder and Wedderburn (1974) introduced

the concept of generalised linear models (GLM), which McCullagh and Nelder (1989)

went into great detail to examine (Myers & Montgomery, 1997). According to Dobson &

Barnett (2018) and Myers & Montgomery (1997) GLM regression modelling is possible

in cases where the responses are distributed as members of the exponential family, that
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is, when;

f(y; θ) = exp[a(y)b(θ) + c(θ) + d(y)] (2)

where y in equation 2 is response variable (observed data), θ is parameter of the distri-

bution, a(y) is function of y (normalizes the distribution), b(θ) is function of θ (relates to

the natural parameter), c(θ) is function of θ (cumulant function) and d(y) is function of

y (ensures valid probability distribution).

Such that the joint distribution function is given by;

f(y1, . . . , yn; θ1, . . . , θn) = exp[
n∑

i=1
a(yi)b(θi) +

n∑

i=1
c(θi) +

n∑

i=1
d(yi)] (3)

where yi in equation 3 is the i-th response variable (observed data), θi is the i-th parameter

of the distribution, a(yi) is a function of the i-th response variable yi, b(θi) is a function

of the i-th parameter θi, c(θi) is a function of the i-th parameter θi and d(yi) is a function

of the i-th response variable yi.

GLMs allow for the specification of a link function and a distribution family appropriate

for the response variable (Dobson & Barnett, 2018). Generalization has been due to

the realisation that a wider class of distributions known as the exponential family of

distributions has many of the "nice" properties of the Normal distribution.

Many well-known distributions belong to the exponential family which includes; the Pois-

son, Normal and Binomial distributions (Neuhaus & McCulloch, 2011). In GLMs, rela-

tionship between the response and explanatory variables need not be of the simple linear

form. Some commonly used models includes; logistic, probit, poisson and survival models.

For yi response variable and Xi, i = 1, 2..., ρ, ρ covariates, the Generalized Linear Model
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(GLM) for yi on the covariates x is given by:

g(µi) = η = xTβ = β0 + β1X1 + β2X2 + . . .+ βρ−1Xρ−1 (4)

where g in equation 4 is a known monotone differentiable function, called the link function

linking the mean, µi of the response yi to the linear predictor η, µ = g−1(η) = b′(θi).

In case of binomial response, the link function g is the logit, given by;

logit(µi) = log( µi
1− µi

) = η = x′β (5)

where η in equation 5 is the linear predictor, x is the vector of predictor variables (fea-

tures), β is the vector of coefficients associated with the predictor variables.

This produces the model µ = 1
1+exp(−x′β) which is a logistic model.

2.1.3 Generalized Linear Mixed Model (GLMM)

Generalized Linear Mixed Models (GLMMs) are statistical models that extend GLM by

incorporating mixed models, models with both fixed and random effects, in the linear

predictor η. In Linear models the regression coefficients are considered as fixed, unknown

constants. However, in some scenario, when the observations are correlated, it is necessary

to assume that some of the coefficients are random (Jiang & Nguyen, 2007). In Longitudi-

nal data, the responses may not be necessarily normal. For example, in cases of binomial

responses, GLMMs are applied to incorporate intra subject correlation of observations

and the subject is modelled as random. Generally, a Generalized linear mixed model

(GLMM) is fully specified by defining its response variable distribution, link function,
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categorical and continuous fixed-effect predictors, and random effects, which indicate how

certain model parameters vary at random in all groups.

According to Jiang & Nguyen (2007); Clayton (1996) generalized linear mixed effect model

is denoted as

g(µi) = η = Xiβ + Ziα (6)

where g in equation 6 is the link function, µi is the mean of the response, Xi is the design

matrix for the mixed effects β and Zi is the design matrix for random effects α.

2.2 Parameter Estimation Methods in Mean Regression

2.2.1 Ordinary Least Square (OLS) Estimation

OLS estimator, minimizing sum of squared residuals, Q = ∑n
ε2i

= εT ε = (Y −Xβ̂)T (Y −

Xβ̂) = Y TY − 2(β̂)TXTY + (β̂)TXTXβ̂ is most commonly used technique to estimate

the linear regression parameters (Ayinde et al., 2015). OLS bases its predictions on

the assumptions such as normality of the dependent variable on the regression structure

(Bagheri et al., 2010; John & Nduka, 2009).

According to Lakshmi et al. (2021); Türkan et al. (2012), the formula for OLS estimates

for coefficients, β and σ in linear model are expressed by;

β̂N = (XTX)−1XTY (7)

where X in equation 7 is the matrix of independent variables, Y is the vector of the

dependent variable, XT denotes the transpose of X and (XTX)−1 represents the inverse

of the matrix product of XT and X. The Standard Error of the Coefficients (SE) =
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√
(σ ∗XTX)−1)

and formula for OLS estimates for variance, σ is expressed by

(σ̂N)2 = 1
2σ2

∑
(yi − xiβ̂N)2 = εT ε/(n− k) (8)

where σ2 in 8is the estimated variance of the errors, often referred to as the mean squared

error (MSE), yi are the observed values of the dependent variable, xi are the observed

values of the independent variable(s), β̂N is the estimated coefficients from the OLS re-

gression, εT is the vector of residuals (errors), calculated as the difference between the

observed values and the predicted values from the regression model, n is the number of

observations in the dataset and k is the number of estimated parameters (including the

intercept) in the model.

The vector of fitted values is represented by;

ŶN = Xβ̂N = X(XTX)−1XTY = HY (9)

where H = X(XTX)−1XT in equation 9 is the vector of leverage measure, the influence

of an individual data point on the model’s parameter estimates.

The coefficients, β̂ in linear model represent the change in the dependent variable for a

one-unit change in the independent variable, holding all other variables constant. The

residual standard deviation, σ, represents the average distance between the observed

values of the dependent variable and the values predicted by the model. A lower residual

standard deviation indicates that the model’s predictions are closer to the actual data

points, suggesting a better fit. In the context of regression coefficients, the standard
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deviation, SE, measures the uncertainty or variability in the estimated coefficients. Larger

standard deviations for the regression coefficients indicate that the estimates are less

precise or more variable. For the leverage measure, H, a data point with high leverage

has an independent variable value that is further away from the mean of the independent

variables. High leverage points can exert significant influence on the parameter estimates

in the regression model.

OLS estimation is not applicable to GLM and GLMM as these models violates the as-

sumptions of normality and homogeinity of variance.

The method of OLS has nice property of providing best estimates under very general

conditions. However, the estimates obtained are prone to gross errors in the presence of

unusual observations called outliers (Adichie, 1967).

2.2.2 Maximum Likelihood (ML) estimation

Maximum Likelihood Estimation (MLE) involve several key functions that play a signifi-

cant role in determining parameter estimates and assessing the goodness of fit of a model.

These functions include; Maximum Likelihood function, log-likelihood, Fisher information

and score function.

The Maximum Likelihood function, denoted as L(θ), represents the likelihood of observing

the data given the model parameter θ, joint distribution and is formally given by;

L(θ) =
∏
f(Xi|θ) (10)

where f(Xi|θ is the probability density function (PDF) of the data point Xi given the

parameter θ.
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The log-likelihood function, denoted as l(θ), is the natural logarithm of the Maximum

Likelihood function in equation 10 and is given by;

l(θ) = lnL(θ) = log(
∏
f(Xi|θ)) (11)

The score function, also known as the gradient of equation 11 provides information about

the direction in which the parameter should be updated to maximize the likelihood. Score

function is formally defined by

Score(θ) = δl(θ) = δ[logL(θ)] (12)

where δ in equation 12 denote the gradient operator, first order derivative.

The Fisher Information (I(θ)) measures the amount of information that the data provides

about the parameter θ. It quantifies the expected curvature of the log-likelihood function

around the true parameter value, represented by the formula;

I(θ) = −E[δl(θ)] (13)

where E in equation 13 denotes the expectation operator.

These functions are fundamental in the MLE framework for estimating parameters and

assessing the statistical properties of the model.
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Linear Model ML estimation

For Linear Model, Maximum Likelihood (ML) Estimation is alternatively used to esti-

mate the model parameters. The method leads to the same estimators for normal error

regression model as those obtained from OLS Method(Dobson & Barnett, 2018). The

Linear Model likelihood function is formally defined by;

L(β, σ2) = 1
(2πσ2)(n/2) exp− 1

2σ2

n∑

i=1
(Yi −Xijβj)2 (14)

where Yi in equation 14 is the response measured on a ratio scale on the i-th subject,

Xij = (1, Xi1, Xi2, ..., Xip) is a row vector of measurements for fixed proxy variables on

the i-th subject, βj = (β0, β1, β2, ..., βp)T is a column vector of corresponding fixed effects

of the variables X on Y .

Maximizing the Score function, Score(β, σ2) = δL(β, σ2) with respect to β0, β1, . . . , βρ−1

leads to estimators for b0, b1, . . . , bρ−1.

GLM ML estimation

For GLM, Maximum Likelihood (ML) Estimation or iterative algorithms are used to

estimate the model parameters (Myers & Montgomery, 1997). The Likelihood function

is given by;

L(θ; y1, . . . , yn) = exp[
n∑

i=1
a(yi)b(θi) +

n∑

i=1
c(θi) +

n∑

i=1
d(yi)] (15)

And log-likelihood function, drived by taking log of function 15, is given by;

I(θ; y1, . . . , yn) =
n∑

i=1
a(yi)b(θi) +

n∑

i=1
c(θi) +

n∑

i=1
d(yi) (16)
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In order to obtain ML estimate θ̂, first derivarive of equation 16 is equated to zero and

solved, E[ ∂l
∂θ

] = 0 and variance is obtained from solving equation E[ ∂2l
∂θ2 +( ∂l

∂θ
)2] = 0 which

are simplified to the following equations

E(yi) = µi = −c
′(θ)

b′(θ) (17)

and

V ar(Yi) = b′′(θi)c′(θi)− c′”(θi)b′(θi)
[b′(θi)]3

(18)

these two equations, 17 and 18 are very useful as far as GLM estimation is a concern.

According to Dobson & Barnett (2008), to obtain the maximum likehood estimator for

the parameter βj which are related to Yi’s through E(Yi) = mui and g(µi) = xTi β, chain

rule for differentiation is used and is given by;

∂l(θ; y)
∂βj

= Uj =
n∑

i=1
[ ∂li
∂θi

∂li
∂µi

∂µi
∂βi

] =
n∑

i=1
[ (yi − µi)
var(Yi)

xij(
∂µi
∂ηi

)] (19)

Fisher information (information matrix) of equation 19 is given by

τjk = E[UjUk] =
n∑

i=1

xijxik

var(Yi)(∂µi∂ηi
)2 = XTWX (20)

where W in equation 20 is N by N diagonal matrix given by wii = 1
var(Yi)(

∂µi
∂ηi

)2

Vector of estimates, bm, of the parameters β−i, . . . , βp at m-th iteration (Dobson & Bar-

nett, 2008) is given by

bm = bm−1 + [τm−1] + Um−1 = (XTWX)−1(XTWz) (21)
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where z in equation 21 has elements zi = ∑n
i=1 xikb

m−1
k + (yi − µi)( ∂ηi∂µi

)

In both Linear Model and GLM, for a continuous explanatory variable X, it’s coefficient,

βi, represents the change in the response corresponding to a change of one-unit in X. For

categorical explanatory variables, there are parameters for the different levels of a factor.

GLMMs ML estimation

GLMMs estimate fixed effects (relationships between predictors and the outcome) and

random effects (variance components) using methods like Restricted Maximum Likelihood

(REML) (Jiang & Nguyen, 2007). For the Gaussian Mixed Models, the point likelihood

function is given by

f(y) = 1
(2π)n/2|V |1/2 exp−

1
2(y −Xβ)′V −1(y −Xβ) (22)

where V = V (θ) in equation 22, n is the dimension of y. And log-likelihood is given by:

l(β, θ) = c− 1
2 log(|V |)−

1
2(y −Xβ)′V −1(y −Xβ) (23)

and Score function, obtained by differentiating equation 23 is defined by:

∂l

∂β
= X ′V −1y −X ′V −1Xβ (24)

Maximizing equation 24, ∂l
∂β

= 0 and solving it simplifies to the ML estimates β̂

β̂ = (X ′V̂ −1X)−1X ′V̂ −1y (25)
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Fixed effects coefficients, given by equation 25, represent the average impact of predictors

on the response, while random effects account for variability within groups.

2.3 Nonparametric regression methods

Nonparametric regression methods offer flexibility and robustness in modeling complex

relationships and are valuable when standard parametric models may not adequately cap-

ture the underlying patterns in the data (Fox, 2002). Relationship between the response

and explanatory variables does not necessarily to be linear as opposed to mean regression

models. Furthermore, the relationship between the response and explanatory variables

does not depend on any particular form of regression function (Čížek & Sadıkoğlu, 2020).

They are suitable for various application in different fields because they offer a more de-

tailed understanding of the relationships between variables. Commonly used nonparamet-

ric regression methods in the modelling of maternal anaemia includes; quantile regression

model and generalized additive models (GAM)

2.3.1 Quantile regression model

Quantile regression (QR) is the statistical technique performed to estimate and provide

inference about the conditional quantile functions, the function that describes the rela-

tionship between explanatory variables and the conditional quantile of a response vari-

able without assuming a specific distribution (John & Nduka, 2009). It uses a general

linear model to fit conditional quantiles of a response, providing information not available

through mean regression methods. Quantile regression model assumes no parametric form

for the conditional distribution of the response and no constant variance for the response,

unlike least squares regression (Rodriguez & Yao, 2017). Therefore, Quantile regression is

30



more effective than classical methods for explaining relationships in circumstances where

mean regression conditions, such as E(εi) = 0, homoscedasticity V ar(εi) = σ2, no auto-

correlation Cov(εi, εj) = 0 for i 6= j, normality assumptions are not met or the interest

resides in the outer regions of the conditional distribution. It performs better than classi-

cal regression when the data is skewed as it minimizes the median than mean (Waldmann,

2018). QR offers advantages for various types of data, including independent, time-to-

event, and longitudinal data (Huang et al., 2017)

Quantiles are commonly defined by ordering and sorting sample observations. Quantile

regression as introduced by Koenker and Bassett in 1978 extend ideas of quantiles, τ ’s

or percentile to estimation of conditional quantile functions models (Koenker & Hallock,

2001). In the model, quantiles of the condition function distribution of the response

variable are expressed as function of observed covariates. Quantile regression extends the

location shift model by determining the effect of factors on the shape and scale of the

entire response distribution (Waldmann, 2018). The gap between quantile lines reflects

whether the distribution is skewed to the right or left.

For response variable (Y) and it’s distribution function F (y) = ρτ (Y ≤ y), the τ -th, for

0 < τ < 1, quantile is defined as Q(τ) = inf(x : F (Y ) ≥ θ)

Quantile model for quantile level τ of the response is given by:

Qτ (Yi) = Xijβj(τ) + εi(τ) (26)

where i in equation 26 is observation 1, ..., n

One of the underlying assumption for the Quantile regression is heteroscedasticity, V (εi 6=
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V (εi) for all i 6= j. When a dataset has heteroscedasticity, OLS findings are no longer reli-

able (John & Nduka, 2009; Rodriguez & Yao, 2017). According to John & Nduka (2009),

Quantile regression gives complete information about relationship between response and

independent variables by posing the question of relationship between the response and the

independent variables at any quantile of the conditional distribution function. Quantile

Regression models can detect heterogeneous effects of covariates at different quantiles of

the outcome and provide more robust and comprehensive estimates than mean regression,

especially when the normality assumption is violated or outliers and long tails are present

(John & Nduka, 2009; Huang et al., 2017).

According to Rodriguez & Yao (2017); Koenker (2005); Huang et al. (2017), there are

various commonly used types of Quantile Regression which include; Lower QR (such

as 25th percentile), Median Regression (50th percentile) and Upper QR (such as 75th

percentile). Lower Quantile Regression (such as 10th, 25th percentile) estimates the re-

lationship at lower quantiles of the response variable, providing insights into the lower

end of the distribution. Median Regression (50th percentile) is the most commonly used

type of quantile regression which estimates the relationship at the median of the response

variable. In cases with asymmetries and heavy tails, the sample median (50th percentile)

is a stronger indicator of centrality than the mean (Koenker, 2017). Upper Quantile Re-

gression (such as 75th, 90th percentile) estimates the relationship at upper quantiles of

the response variable, providing insights into the upper end of the distribution. Compre-

hensive understanding of the relationship between variables across the entire distribution

of the response variable is gained by performing QR at different levels.
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2.3.2 Generalized Additive Model

The model addresses the weakness of GLM which has a strictly linear predictor η. How-

ever, sometimes, the relationship between predictors and the response might be nonlinear,

observations may be partially or temporarily correlated and also the covariates may not

sufficiently describe individual heterogeneity. To address these difficulties, the linear pre-

dictor in GLM is replaced by the structured additive regression model (STAR) predictor.

The model is defined by:

ηi = f1(xi1) + f2(xi2) + · · ·+ fp(xip) + fspat(si) + µ′iγ (27)

where fj for j = 1, 2, 3, . . . , p in equation 27 are smooth functions expressing non linear

relationship between the response variable and the continuous covariates, µ is the vector

of the fixed effects, fspat(si) is partially correlated (random) effect of the location si where

an observation pertains to.

2.4 Parameter estimation in nonparametric regression

2.4.1 Parameter estimation in Quantile Regression

The regression coefficients in the quantile model in Equation 26 are estimated by min-

imising a loss function called the check function, ρτ (r) = τmax(r, 0) + (1− τ)max(−r, 0),

τ ∈ (0, 1) (Rodriguez & Yao, 2017)

argminβ0,...,βρ(τ)
n∑

i=1
ρτ [Yi −Xijβj(τ)] . (28)

The minimization issue generates unique regression coefficients for each quantile level. The
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median regression function is represented by τ = 0.5, while the absolute value function is

represented by 2τ0.5(r)

In quantile regression, the estimated coefficients represent the change in the response

variable at a specific quantile (Jamee et al., 2022). This provides more comprehensive

understanding of the relationship between variables, especially when the relationship is

not constant across different quantiles.

2.4.2 Parameter estimation in Generalized Additive Model

Parameter estimation in Generalized Additive Models (GAMs) involves estimating the

smooth functions for each predictor variable while simultaneously estimating the parame-

ters of the model. To prevent overfitting, models are estimated using penalised maximum

likelihood estimation, such as maximising (Wood, 2004). Penalized maximum likelihood

function is given by:

l(η)− 1
2
∑

j

θj

∫
[f ′′j (x)]2dx (29)

where l in equation 29 is the log-likelihood of the linear predictor and the terms in the sum-

mation are measures of the wiggliness of the component functions of the GAM. Smoothing

parameters (θi) determine the balance of fit and smoothness. The penalised likelihood is

maximised using penalised iteratively reweighted least squares (P-IRLS).

2.5 Diagnostic statistics for mean regression methods

2.5.1 Outliers and leverage measures

Mean Regression diagnostics becomes necessary in regression analysis in order to detect

the presence of outliers and influential points (Ayinde et al., 2015). An outlier is an
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observation that appears to deviate markedly from other data points of the sample in

which it occurs (Barnett et al., 1994). These outliers are frequently unrecognized because

so much data is now processed by computers without sufficient monitoring. Such that

many real world data set for which normal assumption are made, are skewed, heavy-tailed

distribution due to presence of outliers (Chen, 2002; Koller, 2016).

Univariate data has unusual value for a single variable and much concern is an outlier in

the dependent variable in the regression analysis (Kannan & Manoj, 2015). The widely

used methods to identify outliers in univariate data are Box plots and scatter plots.

According to Ritschard & Antille (1992); Chatterjee & Hadi (1986); Cook (1977, 2000), the

classical approach to detection of outliers focuses on standardized least square residuals.

In mean regression, the simplest statistic for analysing outlier observations is the raw

residual given by:

ei = Yi − Ŷi = Yi −Xijβ̂j, (30)

where β̂j in equation 30 is the maximum likelihood estimator for the regression coefficients.

In Generalized Linear Model, we consider residuals that are approximately normally dis-

tributed. This provide more incisive investigation to consider first recipes for calculating

of residuals R(yi, θi) treating θi as known and the replacing θi by fitted values θ̂i = g(x′iβ̂)

(Pierce & Schafer, 1986). There are two possibilities considered, linear and transformed

residuals in GLM (Pierce & Schafer, 1986)

The linear residuals is denoted by:

RL(y, θ) = y − Eθ(y)/SDθ(y) (31)
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where E and SD in equation 31 denote the mean and standard deviation and transformed

linear residual is given by:

RT (y, θ) = t(y)− Eθ[t(y])/SDθ[t(y)] (32)

where t()̇ in equation 32is specified tranformation, usually chosen based on particular

distribution of y.

Residuals play a crucial role in assessing the quality and validity of a linear regression

model. Firstly, by examining the distribution of residuals, helps to check if the normal-

ity assumption holds. Deviations from normality could indicate issues with the model

assumptions. Secondly, residual plots helps to assess whether homoscedasticity assump-

tion hold, the variance of the errors is consistent across all levels of the independent

variables. Patterns in the residuals against fitted values may suggest heteroscedasticity.

Thirdly, residuals helps to detect ouliers in the dataset which may affect model perfor-

mance. Forthly, residual plots can also be used to assess how well the model fits the data.

A pattern in the residuals may suggest that the model is missing important nonlinear

relationships. Lastly, residuals are crucial for conducting hypothesis tests and calculating

confidence intervals. They help assess the precision of the estimates and the significance

of the predictor variables. Therefore, careful analysis and interpreting of the residuals

helps to understand the strengths and weaknesses of the fitted linear regression model.

There are many methods for the detection of outliers in linear model, both graphical and

analytical (Arimie et al., 2020). The graphical methods include Scatter graph, Boxplot,

Williams graph, Rankit graph (or Q-Q Plot) and graph of predicted residuals. The

analytical methods are predicted residuals, standardized residuals, studentized residuals
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and Jack-knife residuals

The standardized (Studentized) residuals, εS,i, used to detect outliers (Cook, 2000; Ritschard

& Antille, 1992), it is given by:

ri = ei
s
√

1− hii
, (33)

where s =
√∑n

1 e
2
i

n−p in equation 33 is the estimate for σ, p is the number of regression

parameters, hii = Xi(XTX)−1)XT
i is the i-th row of the diagnonal of the hat-matrix,

called leverage.

If an observation has a studentized residual that is larger than 2 (in absolute value) is

regarded as an outlier. If the linear regression model is appropriate, with no outlying

observations, each Studentized residual follows a t distribution with n− p− 1 degrees of

freedom. The standardized residuals of more than 3 potentially indicate outlier (Arimie

et al., 2020)

The jacknife residuals is denoted by:

εJ,i = ˆεS,i

√√√√ n− p− 1
n− p− ε2

S,i

(34)

where εS,i in equation 34 is the Studentized residuals. The jacknife residual examine the

influence of individual point on the quadratic error of the prediction.

The predicted residual for observation i is defined as the residual for the i-th observation

that results from dropping the i-th observation from the parameter estimates. Predicted

residual is denoted by:

εP,i = εi
1− hi

(35)
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PRESS statistic is the sum of squares of predicted residual error, which have an ability to

assess model’s predictive ability (Arimie et al., 2020). In least square regression, PRESS

is denoted by

PRESS =
n∑

1

εi
1− hi

2
(36)

where εi in equation 36 is residual and hi is leverage value for the i-th observation. The

predictive power of the model increases with decreasing PRESS value (Arimie et al., 2020).

In regression analysis, the concept of leverage is employed to identify the observation(s)

that deviate from the corresponding mean covariate values (Chaku & Donev, n.d.). It

therefore, doesn’t have a very significant effect on the outcome of the models fitting but

have greater potential to pool the regression line. If the leverage point falls outside the

overall pattern, it can seem to be influential.

In Linear Model, the leverage measure is given by:

hi = Xi(XTX)−1)XT
i (37)

where hi in equation 37 is i-th diagnonal element, interpreted as amount of Leverage or

influence exerted by Yi on Ŷi, hi is large if hi ≥ 2 p
n
where p = ∑n

1 hi (Gray, 1989).

The leverage value is related to the residual variance by V ar(ei) = σ2(1− hi). Implying

that a high leverage point usually has a smaller residual value.

In GLM, the leverage formula takes into account the link function and the variance func-

tion of the model. Both linear models and GLMs use leverage to assess the influence of

individual data points on the model fit.
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2.5.2 Cook’s distance measures

This measure is called Cook’s distance and was proposed by Cook in 1977 (Cook, 1977).

Cook’s distance ( Di), (Cook, 1977, 2000), measures the distance between the estimates

of the regression coefficients with the i-th observation β̂

and without the i-th observation β̂−i for the metric 1
pσ̂2 (XTX). Therefore, Di is the

aggregate influence measure of i-th deleted case on all fitted values. Such that Di is

defined by:

Di = (β̂ − β̂−i)T (XTX)(β̂ − β̂−i)
pσ̂2 = r2

i

p

hi
(1− hi)

ti (38)

where β̂ and β̂−i in equation 38 respectively provide estimate on all n data points and

the estimate obtained after the i-th observation is deleted. Cook suggests that Di be

compared to a central F distribution, F (p, n − p). For example, if the percentile value

is less than about 20 percent, the unit has little apparent influence on the regression

coefficients (Oyeyemi et al., 2017). On the other hand, if the percentile value is near

50 percent or more, the influence is partially important (Ayinde et al., 2015). The i-th

deleted case is considered influential if Di > 1 (Cook, 1977).

2.5.3 The Welsch-Kuh distance (DFFITS)

Welsch and Kuh in 1977, Welsch and Peters in 1978, and Belsley, Kuh, and Welsch in

1980 suggested using σ̂2
i as an estimate of σ2 (Chatterjee & Hadi, 1986) and called the

impact of i-th observation on the i-th predicted value by scaling the change in prediction

at xi when the i-th observation is omitted (Ayinde et al., 2015) DFFITSi. DFFITS

diagnostic combines the information in the leverage hi, and the Studentized residual ei.
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The influence that case i has on the fitted value Ŷi is defined by:

DFFITSi = |Ŷ − Ŷ−i|
σ̂−i
√
hi

= |X
T
i (β̂ − β̂−i)|
σ̂−i
√
hi

= |ti|
√

hi
1− hi

(39)

where ti = εi

σ̂
√

(1−hi)
in equation 39 is i-th studentized residual (also called externaal

studentized residual).

It is recommended that a |DFFITS| ≥ 2
√

p
n
requires attention for large data set and if

DFFITS is greater than 1 for small to medium data set (Chatterjee & Hadi, 2009; Türkan

et al., 2012), where p is the number of independent variable and p
n
is the mean leverage.

2.5.4 DFBETAS

DFBETA is used to determine the changes in parameters of the new regression equation

produced after removing the ith observation from the dataset (Belsley et al., 2005). Thus,

DFBETAS measures influence of i-th case on each regression coefficients, bk. DFBETAS

statistic is defined by:

DFBETASi = β̂j − β̂j(i)√
MSE(i)Cjj

, (40)

where Cjj in equation 40 is the j-th diagonal element of the quantity (XTX)−1, and

MSE(i) the mean square error estimate obtained after deleting the i-th case in the re-

gression model fitting, is used to estimate the error term variance, σ2. The i-th case’s

significant influence on the k-th regression coefficient is indicated by large absolute value

of (DFBETAS)k(i). The value with higher BEFBETAS is considered an outlier. DF-

BETAS is considered large if it is greater than 1 for small data set or 2√
n
for large data

set (Ayinde et al., 2015). When the sample size is big, DFBETAS has limited sensitivity

in outlier detection, but it is most effective in small sample sizes and outlier percentages
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(Oyeyemi et al., 2017).

While a larger DFBETA value indicates an outlier, DFBETA values calculated from

observations decrease proportionally as the number of observations increases (Bahadir et

al., 2014). DFBETAS is considered large if is greater than 1 (small data) or 2√
n
(large

data).

2.6 Robust Regression methods

2.6.1 Maximum Likelihood Type Estimation (M-estimator)

It was introduced by Huber (1973) and is a commonly generally used method due to it’s

simplicity, both computationally and theoretically (Ayinde et al., 2015). It is robust when

the outliers are in the response direction (y-direction) (Chen, 2002).

The M-estimator’s goal is to minimise a function of the errors (loss function), ρ rather

than the sum of squared errors, goal of OLS (Ayinde et al., 2015). The objective function

of the M-estimate is:

Min
n∑

i=1
ρ(ei
s

) = Min
n∑

i=1
ρ(Yi −Xiβ

s
) (41)

where s in function 41 is estimate of scale often formed from linear combination of the

residuals.

A reasonable ρ should have the properties: ρ(e) ≥ 0, ρ(0) = 0, ρ(e) = ρ(−e), and

ρ(ei) ≥ ρ(eTi ) for |ei| = |eTi |. Minima solution associated with equation 41 is obtained by

taking Gauss-Newton iterations, helped by R ROSEPACK package: ∑n
i=1(φ)(Yi−Xiβi

s
)Xi

where φ is a derivative of ρ.

In general, the Huber M-estimator outperforms OLS regression when outliers are located
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along the y-axis rather than when outliers are located along the x-axis (Kim & Li, 2023).

2.6.2 Schweppe’s Estimators (S-estimator)

S-estimator is a high breakdown value method introduced by Rousseeuw and Yohai in

1984 (Chen, 2002). S-estimator which is derived from a scale statistic in an implicit way

(Rousseeuw & Hubert, 2018), corresponding to s(θ) where s(θ) is a certain type of robust

M-estimate of the scale of the residuals. Tukey’s weight function was suggested and is

defined as ρ(x)

S-estimator is defined by minimization of dispersion of residuals: Minimize S(e1(θ), ..., en(θ),

defined as solution of
1
n

n∑

1
ρ(ei
s

) = K (42)

where s(θ) in equation 42 is a type of robust M-Estimate of scale of residuals, K is

a constant and ρ( ei
s

) is the residual function, k = 1.547, is a common choice. This

S-estimator resists contamination of up to 50 percent of outliers; it is said to have a

breakdown point of 50 percent (Verardi & Croux, 2009). Unfortunately, this S-estimator

has a Gaussian efficiency of only 28.7 percent (Verardi & Croux, 2009).

2.6.3 Least Trimmed Squares (LTS) estimator

LTS estimation is a high breakdown value method introduced by Rousseeuw in 1984

(Ayinde et al., 2015). The breakdown value expresses the percentage of contamination

that a process can tolerate without losing its resilience (Chen, 2002). LTS eliminates

possible outliers by running the analysis on trimmed or winsorized distributions (Yaffee,

2002). Distributions that have their outliers trimmed prior to the analysis are sometimes

called trimmed means procedures. According to Rousseeuw, the LTS procedure is more
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efficient than the S or M procedure (Yaffee, 2002).

LTS estimator minimizes the sum of trimmed squared residuals and is given by:

β̂LTS = Min
n∑

i=1
e2
i (43)

such that e2
(1) ≤ e2

(2) . . . ≤ e2
(n) in equation 43 are the ordered squares residuals and h is

defined in the range n
2 + 1 ≤ h ≤ 3n+p+1

4 , with n and p being sample size and number of

parameters respectively. The largest squared residuals are excluded from the summation

in this method.

The previously proposed LTS algorithms grows too much with size of the data hence

the proposition of the new algorithm called FAST-LTS (Rousseeuw & Van, 2006). For

small data sets FAST-LTS typically finds the exact LTS, whereas for larger data sets it

gives more accurate results than existing algorithms for LTS and is faster by orders of

magnitude (Rousseeuw & Van, 2006).

Despite the limitation of relative efficiency of 37 percent and low convergence rate, LMS

estimators can highly influence the calculation of the much more efficient MM estimators

by providing initial estimates of the residuals (Bagheri et al., 2010).

2.6.4 MM Estimators

In the S-estimator, if k = 5.182, the Gaussian efficiency rises to 96.6 percent, but the

breakdown point drops to 10 percent and to cope with this, Yohai (1987) introduced

MM-estimators that combine a high breakdown point and a high efficiency (Yohai, 1987;

Verardi & Croux, 2009). This is a special type of M-estimator (Yohai, 1987). It combines

high breakdown value estimation and M estimation (Chen, 2002). They concurrently
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possess the following qualities: When the mistakes are distributed normally and their

breakdown point is 0.5, they are both (i) very effective and (ii) highly efficient (Chen,

2002; Ayinde et al., 2015). It was among the first robust estimators to have these two

properties simultaneously (Ayinde et al., 2015). A three-stage process is used to define

the MM-estimates (Ayinde et al., 2015). In the first stage an initial regression estimate is

computed which is consistent robust and with high breakdown-point but not necessarily

efficient. The residuals from the initial estimate are used to compute an M-estimate of

the errors scale in the second step. Finally, in the third stage, a correct redescending

psi-function-based M-estimate of the regression parameters is computed (Yohai, 1987).

MM-estimator β̂ defined as a solution to:

n∑

i=1
xij(φ1)(

yi − xiβi
sn

)xi (44)

where j=1,2,...,p, φ1(µ) = ∂ρ1(µ)
∂µ

2.7 Robust diagnostic statistics measures

The diagnostics which are based on the mean regression estimates are not efficient and

cannot detect correctly swamping and masking effects (Türkan et al., 2012). Outlier

swamping effect happens where non outliers are made to appear to be outliers while

masking effect happens where outliers conceal one another (Jajo, 2005). Robust regression

is an appropriate substitute for the OLS and ML when there are influential observations

(Bagheri et al., 2010). Therefore, Robust version of diagnostics were proposed to identify

outliers. To create a diagnostic tool for outlier detection that may be resistant to masking

or swamping, some studies suggested divide the robust residuals (residuals from robust
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fit) in the numerator by the robust scale estimate in the denominator (Jajo, 2005). This

technology, which is advertised as being simple to use and robust in its application, may

detect single or several outliers without experiencing masking or swamping issues.

According to Rousseeuw & Hubert (2011); Iglewicz & Martinez (1982), the residual for

the robust estimators is given by;

ZR,i = yi −medianj=1,...,n(ŷj)
mediani=1,...,n|yi −medianj=1,...,n(ŷj)|

(45)

The outlying observation has robust score, ZR,i of greater than 2.

It is proposed to use the Huber-M estimator of β instead of β̂, which is the least square

estimator, and the robust scale estimate of σ instead of σ̂ which is the least square esti-

mator in OLS/ML Cook’s distance, DFFITS and DFBETAS to obtain a robust versions

(Türkan et al., 2012). Therefore, the Robust version of Cook’s Distance, RDi, DFFITS,

RDFFITSi and DFBETAS, RDFBETASi can be defined as follows:

Therefore, the Robust version of Cook’s Distance, RDi is defined by:

RDi = (β̂r − β̂r(−i))T (XTX)(β̂r − β̂r(−i))
pσ̂2

r

(46)

where β̂r in 46 is the robust estimation of β and σ̂2
r the robust scale estimation of σ.

Robust DFFITS, RDFFITSi is given by:

RDFFITSi = |X
T
i (β̂r − ˆβr(−i))|
σ̂r(−i)

√
hi

(47)
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where hi in equation 47 is the i-th diagonal element of hat matrix and σ̂r(−i) the robust

scale estimation of σ calculated from the data set without i-th observation.

And Robust DFBETAS, RDFBETASi is defined by:

(RDFBETAS)k(i) = br − br(i)√
MSEiCkk

(48)

where k = 0, 1, 2, ..., p− 1 in equation 48

2.8 Model goodness of fit measures

Standard Errors (SE) and Bias measures were used. Lower values of bias and standard

errors indicate a better fit. Standard Error, SEβ̂ and Bias are given by;

SEβ̂ = σ√
(n)

(49)

Bias(β) = E(β̂)− β (50)

where n in equation 49 and 50 is the sample size.

2.9 Application of mean, quantile, and robust regression meth-

ods and diagnostic statistics to real life data sets

Numerous studies (Notapiri et al., 2022; Doganer et al., 2021; Ayinde et al., 2015; Atkin-

son, 1982) used robust regression methods and diagnostic statistics to real life data set.

In order to overcome outlier problem, Notapiri et al. (2022) used robust regression with
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S-estimator to model crime rate in Indonesia during the COVID-19 pandemic. The study

used 7 steps to obtain S-estimator, this approach involved a detailed iterative process to

obtain accurate estimates despite the presence of outliers, highlighting the robustness of

their method in handling real-world data complexities. Firstly, estimated β̂ using OLS.

Secondly, computed residual εi = yi − ŷi. Thirdly, computed σ̂s = median|εi−median(εi)|
0.6745 for

the first iteration, σ̂s =
√

1
nK

∑n
i=1 wiε

2
i for the next iteration, with K=0.1995. Forthly,

mui = εi
σ̂s
. Fifthly, weighted value wi computed using Tukey’s bisquare (tuning constant

c=1.548). Then the estimation of β̂s using WLS with weighted wi. The steps 2 to 5 were

repeated to obtain a convergent value of β̂s. The study did not report on the software

used for data analysis. The Regression assumption tests were performed and results

reported that the data was not normally distributed. The study reported that crime rate

in Indonesia during the COVID-19 pandemic was influenced by the unemployment rate,

poverty rate, GRDP per capita, population density and human development index.

Similarly, Doganer et al. (2021) used M-estimator to investigate the effects of changing

hormone levels in pregnancy on cognitive perception levels in pregnant women aged 18

to 40 years. A total of 84 individuals, 42 pregnant and 42 healthy non-pregnant women

(as control group) enrolled in the study. The study used Shapiro-Wilk test to test for the

normality assumption in linear model. Robust regression analysis, M-estimator, was used

for model estimations. Data analysis was performed in IBM SPSS and R 3.6.0 software.

By using robust methods, the researchers were able to obtain reliable estimates that pro-

vided meaningful insights into the cognitive changes experienced by pregnant women. The

study observed significantly lower cognitive scores in pregnant women compared to control

group. The results were in agreement with previous studies. The study concluded that

it is important to identify the responsible factors causing cognitive changes in pregnant
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women and provide necessary support through out the period. This study demonstrated

the utility of robust regression in medical research, where data often contain outliers due

to biological variability.

Ayinde et al. (2015) compared the performance of OLS and robust M-stimator with robust

MM, S and LTS estimators to determine the most efficient estimator. The models were

fitted to three real life data sets; Longley data, Scottish Hills data and Hussein data

and performance of diagnostic measures was compared. The study did not report the

software used in data analysis neither did it report how the analysis was performed.

The study reported diagnostics measures based on OLS do not give reliable estimates as

compared to robust estimators, with MM estimators being more effective. In the study

suggested that the performance of the robust version of the influential statistic is largely

dependent on the root mean square error. Furthermore, it was reported that Cook’s

distance and DFFITS detected almost similar influential data points than DFBETAS

across OLS, M, MM, S and LTS estimators. Their findings underscored the superiority

of robust estimators in providing reliable results when dealing with datasets containing

outliers. This study reinforced the importance of choosing appropriate statistical methods

to ensure the accuracy and reliability of research findings in diverse fields.

There are limited studies in literature that used linear regression model to study risk

factors of maternal anaemia. When modelling maternal anaemia, it can be applied when

the response variable is haemoglobin level, continuous variable rather than when the

haemoglobin levels are categorized. Most research in this area has favored logistic re-

gression models due to their suitability for binary or categorical outcomes, such as the

presence or absence of anemia. For example, Alem et al. (2023), Sunuwar et al. (2020),
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Acharya et al. (2022) all utilized logistic regression to identify risk factors for maternal

anemia1. These studies typically focus on whether or not a woman is anemic, which is a

binary outcome, making logistic regression an appropriate choice.

However, Pasricha et al. (2010) highlighted that use of haemoglobin level avoids catego-

rization of haemoglobin level which has age and ethnic ambiquities, particularly in chil-

dren. By modeling haemoglobin levels as a continuous variable, linear regression avoids

the need to categorize haemoglobin levels, which can introduce ambiguities related to age

and ethnicity. This approach allows for a more nuanced understanding of the factors

influencing haemoglobin levels and can provide more precise estimates of the effects of

various predictors.

The preference for logistic regression in many studies may be due to the ease of interpre-

tation and the straightforward nature of binary outcomes. Nonetheless, linear regression

models offer significant benefits in terms of detail and accuracy, especially when dealing

with continuous data like haemoglobin levels. This methodological choice can lead to

more comprehensive insights into the risk factors of maternal anemia, as it captures the

full range of haemoglobin levels rather than reducing the data to a binary outcome.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Statistical methods

3.1.1 Mean regression and estimation

For a continuous response variable Yi measuring haemoglobin level of i-th woman and Xij

being her bio-demographic and socio-economic characteristics, where i = 1, 2, ..., n and

j = 0, 1, 2, ..., p, a mean regression model estimates the conditional mean of Y given a set

of explanatory variables Xij (Sarstedt et al., 2019). In reference to Equation 1, Yi is the

dependent Hb variable; Xij = (Xi0, Xi1, Xi2, ..., Xip) the row vector of a set of independent

variables observed on the i-th woman, with Xi0 = 1; βj = (β0, β1, β2, ..., βp)T is a column

vector of regression parameters; and εi the model’s error term. The values Yi are measured

indendently and their variance is constant (Peña & Slate, 2006). Further, εi ∼ N(0, σ2).

The linear combination of the variables Xij directly describes the responsed Yi. This is

the reason the linear model in Equation 1 is called mean regression model (Sarstedt et

al., 2019).

The maternal anaemia model of identifying determinants used can be given by

Hemoglobin− level = β0 + β1 ∗BMI + β2 ∗ Age+ β3 ∗ distance+ β4 ∗ Education

+ β5 ∗Residence+ β6 ∗Wealth− Index+ β7 ∗Gravidity

+ β8 ∗ Current− preg − duration+ εi (51)
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The ML/OLS estimation method was used to estimate the parameters, β and σ, in the

model. The parameter β estimation formula is expressed by:

β̂N = (XTX)−1XTY (52)

where N = 0, ..., 8

Based on the normality assumption for the error term, and hence the response Y , the re-

gression parameters β of the linear model in Equation 1 are estimated using the maximum

likelihood estimation technique given by:

L(β) =
n∏

i=1

1√
2πσ2

exp
[
− 1

2σ2 (Yi −Xijβj)2
]
. (53)

The solutions are the values of β at the maximum turning point of the log-likelihood

function that is obtained from the likelihood function in Equation 53. This is obtained by

taking first partial derivatives of the log-likelihood function and equate the result to zero

to solve for values of β. Such process gives the following maximum likelihood estimator:

β̂ = (XTX)−1XTy, (54)

where X is n × p design matrix and y is n × 1 vector of responses. The estimation

of β in Equation 1 can also be done through a ordinary least squares approach, where

the the solutions are the ones that give the minimum of sum of squares of the model

errors. The method yields similar estimates of β as those obtained through maximum

likelihood approach given in Equation 54. The value β̂ stands for amount of change in Y

as a result of a unit increase in the value of Xj, holding other covariates constant. Both
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maximum likelihood and least squares estimation methods extend to generalised linear

models (Dobson & Barnett, 2008).

The interpretation of the parameters in the mean regression vary slighly depending on the

type of predictor variable, continuous or categorical. For continuous predictor variable,

coefficient β represents the change in the mean of the response variable for a one-unit

change in that continuous variable, holding all other variables constant. For categorical

predictor variable, the interpretation depends on how they are coded. Such that the

coefficient β for each category represents the difference in the mean of the dependent

variable compared to a reference category.

3.1.2 Quantile regression and estimation

When the ratio-scale data are skewed and the normality assumptions for the errors and

responses do not hold true, then the nonparametric quantile regression model becomes

an immediate choice to model the data (Fox, 2002; Koenker, 2017; Čížek & Sadıkoğlu,

2020). The relationship between X and Y is estimated without assuming any specific

probability distribution for Y . The linear relationship between X and Y is estimated

at particular quantile of Y , providing information not available through mean regression

methods (Rodriguez & Yao, 2017). Becasue the quantile model in Equation 26 describes

the regression relatioship at a chosen quantile of Y , it performs better than the mean

model in Equation 1, when the data are skewed (Rodriguez & Yao, 2017; Waldmann,

2018). The quantile regression extends the location shift model by determining the effect

of covariates on the shape and scale of the entire response distribution (Waldmann, 2018).

The regression coefficients in the quantile model in Equation 26 are estimated by min-

imising equation 28. The estimated coefficient from Equation 28 represents the change in
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the response variable at a specific quantile corresponding to a unit change in the covariate

(Jamee et al., 2022). The quantile regression provides more comprehensive understanding

of the relationship between the explanatory and response variables, especially when the

relationship is not constant across different quantiles (Rodriguez & Yao, 2017).

The model was fitted using STATA version 17.0. The package "qreg" was used to fit the

quantile regression models for different levels, τ ; 0.25 (25th), 0.5 (50th), 0.75 (75th) and

0.90 (90th).

In Quantile Regression, the interpretation of parameters for both continuous and categori-

cal predictors variables is focused on estimating the conditional quantiles of the dependent

variable. The parameters in quantile regression provide information about how the inde-

pendent variables affect different quantile levels of the response variable distribution. The

contionuous predictor variable, the coefficient β indicates how a one-unit change in the

independent variable affects the conditional quantile of the dependent variable. In quan-

tile regression, the interpretation is about the impact on a specific quantile of interest, as

opposed to mean regression, where the coefficient represents the change in the mean. For

categorical predictor variable, the coefficients β indicate the difference in the conditional

quantile of the dependent variable compared to a reference category.

3.1.3 Robust linear regression and estimation

Robust regression for a linear model in Equation 1 generally refers to a set of model esti-

mation techniques that relax the parametric assumptions of the model off the usual esti-

mation techniques (Huber, 1973). The robust regression method outperforms MLE and

OLS when outliers are located along the y-axis rather than the x-axis in the model (Chen,

2002). One of the methods called maximum likelihood type estimation (M-estimator) ap-
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proaches the estimation by minimising a function of the errors called loss function, denoted

by ρ(.) rather than the sum of squared errors (Chen, 2002). Its objective function is given

by:

min
n∑

i=1
ρ
(
ei
s

)
= min

n∑

i=1
ρ

(
Yi −Xijβj

s

)
, (55)

where s is an estimate of scale, often estimated by median absolute deviation (MAD)

of the residuals, i.e. s = median|ei−median(ei)|
0.6745 . The loss function ρ(.) has the following

properties: ρ(e) ≥ 0, ρ(0) = 0, ρ(e) = ρ(−e), and ρ(ei) ≥ ρ(eTi ) for |ei| = |eTi | (Rousseeuw

& Hubert, 2011). The solutions from Equation 55 are obtained using the Gauss-Newton

iterations on the score function:

n∑

i=1
(φ)

(
Yi −Xijβj

s

)
Xij = 0, (56)

where φ in Equation 56 is a partial derivative of ρ with respect to β (Rousseeuw & Hubert,

2018).

Another robust regression method used is the Schweppe’s estimator (S-estimator), which

is known to have a high-breakdown point and can withstand the influence of a large

presence of outliers in regression parameter estimation (Chen, 2002). The S-estimator

is derived from a scale statistic corresponding to residuals of M-estimator. For a set of

residuals e1, e2, ..., en, the scale estimate min s(e1(β), e2(β), ..., en(β)) is the solution of:

min
n∑

i=1
ρ

(
Yi −Xijβj

s

)
, and σ̂s =

√√√√(nK)−1
n∑

i=1
wie2

i , (57)

where K = 0.199 is the expectation value of ρ(.) for a standard normal distribution, wi is

the weighting term, and the estimation proceeds using the score function as in Equation
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56. The S-estimator in Equation 57 resists contamination of up to 50 percent of outliers,

hence its breakdown point is 50 percent (Verardi & Croux, 2009).

Studies also use the least trimmed squares (LTS) estimator to flexibly estimate the re-

gression parameters in linear models, which has also high-breakdown point (Rousseeuw

& Hubert, 2018). The method eliminates regression parameters by running the analysis

on trimmed or winsorized distributions without outliers (Rousseeuw & Hubert, 2011).

The LTS-estimator is known to be more efficient than the S- or M-estimators (Rousseeuw

& Hubert, 2018). The LTS-estimator is a solution that minimizes the sum of trimmed

squared residuals, and it is given by:

β̂LTS = min
l∑

i=1
e2

(i), (58)

where e2
(1) ≤ e2

(2) . . . ≤ e2
(n) are the ranked squares residuals, l = [n(1−α)+1] is the number

of observations included in the computation of the estimator, and α the proportion of

trimming that is performed (Rousseeuw & Van, 2006). The largest squared residuals are

excluded from the summation for being suspected as outliers.

Finally, an improved special type of the M-estimator called MM-estimator combines

achieving high-breakdown point and high efficiency in the estimation (Yohai, 1987; Ver-

ardi & Croux, 2009; Chen, 2002). The method estimates the parameters using S-estimator

which minimises the scale of the residual from the M-estimator and then proceed with

M-estimation (Chen, 2002). It is one of the few robust estimators having the two prop-

erties simultaneously (Rousseeuw & Hubert, 2011). The MM-estimator β̂ solutions are
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obtained from the function:

n∑

i=1
Xij(φ1)

(
Yi −Xijβj

sn

)
= 0, (59)

where φ1(β) = ∂ρ1(β)
∂β

, with ρ from S-estimator. The MM-estimates from Equation 59

are obtained in a sequential manner, where an initial regression estimate is computed

first to obtain consistent robust and high-breakdown point estimate, but which is not

necessarily efficient. Then, from the initial estimate, M-estimates of the errors scale are

computed in the second step. This is followed by computation of a correct redescending

φ-function-based M-estimate of the regression parameters in the third stage (Yohai, 1987).

Parameter interpretation focuses on estimating the relationship between response and pre-

dictor variables while downweighting the impact of extreme values. Parameter estimates

provide a robust estimation of the linear relationship between response and covariates by

considering a subset of data points.

3.2 Outlier detection statistics for mean, quantile and robust

regression methods

3.2.1 Analysis of outliers in mean regression

Anomolous data and outlier observations tend to distort and bias the conclusions from

regression models, and need to be dealt with accordingly (Kaombe & Manda, 2023b,a;

Kaombe, 2024). The raw residual given by equation 30 was employed in the study. The

raw residual in Equation 30 measures the disagreement between the observed value of the

response Yi and the fitted value Ŷi for the i-th subject (Kaombe, 2024). The larger the

value of ei, the poor the fit of the model to the i-th observation, and hence the higher
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chances that the observation is an outlier in the model. While small values close to zero

show high agreement between the fitted and observed values, hence a better fit (Kaombe

& Manda, 2023b). If the responses Yi were skewed, it becomes highly likely that the raw

residual in Equation 30 will also be skewed. This affects assessments of outlier observations

on both sides of the regression model. For this reason, studentised or standardised residual

is often used to symmetricise the values of the residual and make the outlier assessment

easier (Kaombe & Manda, 2023b). The standardised (Studentised) residual in Equation

33 is widely used to assess outliers. In most cases, the assessment of outlier observations

is done graphically by plotting the residual in Equation 30 or 33. Boxplots of the residual

can also help in analysing the unusual subjects. Other transformations of the raw residual

exist in literature depending on the goal of analysis (Kaombe & Manda, 2023b).

Now, when outliers are detected in the model, various analyses follows. If the analyst

is interested to know the source of outlierness so as to inform policy decisions from the

data analysis or improve the data management, then the data back-inspection is done

to further describe the outlier observations (Kaombe et al., 2023; Kaombe, 2024). If the

researcher intends to improve the modelling, then influence analysis follows to estimate

the impact of the outliers on regression coefficient estimates (Kaombe & Manda, 2023a).

This is done using various statistics that analyse effect of deleting the outlier observation

from the data. One such measure is the difference in beta standardised (DFBETAS) given

by Equation 40. DFBETAS values calculated from observations decrease proportionally

as the number of observations increases (Bahadir et al., 2014). Thus when the sample

size is big, the DFBETAS in Equation 40 has limited sensitivity in influential points

detection, but it is most effective in small sample sizes and outlier percentages (Oyeyemi

et al., 2017). An observation with DFBETAS 40 that is greater than 1 for small dataset
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or greater than 2√
n
for large dataset is considered influential (Belsley et al., 2005).

3.2.2 Outlier analysis in quantile regression

A counterpart raw residual for a quantile linear model is given by:

eQ,i = Qτ (Yi)− Q̂τ |X(Yi), (60)

where Q̂τ |X(Yi) is predicted τ -th conditional quantile of the dependent variable Yi at a

specified quantile level τ given the covariates X, and Qτ (Yi) is the observed τ -th quantile

of Yi. Large values of the residual 60 correspond to outlier candidates. Similarly, the

Studentized residual for the quantile model is given by:

rQ,i = eQ,i
σ̂
√

1− hii
, (61)

where the quantity σ̂ is as defined before, and hii = XT
i (XTWτX)−1Xi is the leverage

of i-th observation on the fitted value, where Wτ are the weights for each observation

(determined by the robust estimator). Large Studentized residual in Equation 61 suggest

potential outliers. Another useful transformation of the raw residual for quantile linear

model is the jacknife residual given by:

JQ,i = eS,i

√√√√ n− p− 1
n− p− e2

Q,i

, (62)

where eQ,i is the raw residual. The jacknife residual in Equation 62 examine the influence

of individual point on the quadratic error of the prediction. The follow-up DFBETAS for

assessment of influence is defined in a similar manner as in mean regression models.
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3.2.3 Detecting outliers in robust regression model

The diagnostic statistics based on the mean regression estimates are limited in terms

of dealing with swamping and masking effects (Türkan et al., 2012). Swamping effect

means a good observation being wrongly identified as an outlier because of the presence

of another clean subset of the data (Jajo, 2005). On the other hand, masking effect

implies that an outlier is undetected because of the presence of another competing outlier

(Jajo, 2005). Robust regression solves this by producing estimates with high-breakdown

point (Rousseeuw & Hubert, 2011). As such, the robust regression diagnostics tend to

be resistant to masking or swamping effects (Jajo, 2005). A standardised residual for the

robust model is given by:

ZR,i = 0.6745(Yi − Ŷi)
median|(Yi − Ŷi)i −median((Yi − Ŷi))|

, (63)

where Ŷi is a fitted value obtained from the robust regression method used and the de-

nominator is the MAD of (Yi− Ŷi). The outlier observation has robust residual score, ZR,i

in Equation 63 that is greater than 2 or less than minus 2 (Rousseeuw & Hubert, 2011;

Türkan et al., 2012). The robust DFBETAS is defined and interpreted in a similar way

as in mean regression.

3.3 Simulation scheme

A simulation study was carried out to analyse perfomance of the reviewed residuals for

mean, quantile and robust regression methods in detecting outlier observations in a data
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set. A linear model given below was used to generate the data:

Yi = β0 + β1Xi1 + β2Xi2 + εi, (64)

where εi ∼ N(0, 1), Xi1 ∼ N(2.3, 0.5), Xi2 ∼ N(8, 2.4), β0 = 2.1, β1 = 0.7 and β2 = 0.9.

Samples of size n = 50, and n = 500 observations were generated, and each sample was

redrawn 100 times. The sample sizes were chosen to provide a comprehensive analysis of

the performance of the residuals under different conditions. Larger sample sizes generally

offer more reliable and robust statistical estimates. By including n=500, the study ensures

that the results are not solely dependent on small sample behavior, which can sometimes

be erratic or less reliable.

To ensure reproducibility, STATA command "set seed 12345 + simulation number" was

used to set up and draw the data up to 100 simulations. Then perturbations were intro-

duced to quarter of the observations in each data set generated by the model in Equation

64 as follows: where εi ∼ N(−7.8, 22.1), β0 = 15, β1 = 6 and β2 = 10 to observe the

performance of the model in estimating the regression parameters. The final set of per-

turbations were introduced to only first five observations using the same parameters. The

rest observations were generated based on model 64. This was done to assess the outlier

detection ability by each model.

The three modelling methods: mean, quantile and robust regression were fitted to the data

and their diagnostic statistics analysed. The efficiency of the three modelling methods

was judged using bias of estimated parameters, calculated by:

bias(β̂j) = E(β̂j)− βj, (65)
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where E(β̂j) was the average of β̂j in 100 simulations, βj the original parameter value as

in model 64, j = 0, 1, 2. An efficient model was the one with the bias in Equation 65 close

to zero. The model efficiency was also assessed using effect sizes β̂ and their standard

errors,
√
var(β̂). The smaller the standard error the more accurate the estimates from

a particular model. The sensitivity of each model to outlier observations was judged by

the number of times out of 100 simulations the model’s outlier residual as per Section

2.5 detected the 5 individuals generated with perturbed data (Kaombe & Manda, 2023b).

All the analyses were performed using STATA version 17 and code is given in Appendix

1.

3.4 Application to maternal anaemia data

The study further analyzed secondary maternal anaemia data, collected from the 2015-

2016 Malawi Demographic Health Surveys (MDHS), inorder to compare the performance

of the three modelling methods using real data. Demographic Health Surveys uses a

cross-sectional study and cluster sampling to collect data from the individuals in the

sample frame defined. The survey data was collected between 19th October 2015 and

17th February 2016. The 2015-16 MDHS is the fifth Demographic and Health Survey

conducted in Malawi since 1992. Part of the purpose of the data collection was to pro-

vide an overview for monitoring maternal and child health, and to provde the nation’s

health experts with data they needed to carry out additional research on the subject.

The data access permission was provided by Measure DHS Program through the website

(https://dhsprogram.com/data/available-datasets.cfm).

The stratified two stage cluster sampling design was used. The Malawi National Statisti-

cal Office (NSO) provided the sampling frame for the 2015–16 MDHS, which was derived
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from the 2008 Malawi Population and Housing Census (MPHC). The primary sampling

units were the census standard enumeration areas (SEAs), and the secondary sampling

units were the households. SEAs were stratified in terms of rural and urban areas which

yielded to 56 sampling strata. In the first selection stage, 850 SEAs, comprising of 173

in urban and 677 in rural areas (stratum or SEAs), were selected using a probability pro-

portional to the SEA size. In the second selection stage, fixed number of 30 households

per urban cluster and 33 per rural cluster were selected with an equal probability sys-

tematic selection from the newly created household listing. A representative total sample

of 27,516 households was selected for the 2015-2016 MDHS. The 2015-2016 MDHS data

collection was by the questionnaire. There were four questionnaires; household, woman,

men, and biomarker questionnaires. Computer-assisted personal interviewing (CAPI)

data collection approach was used.

All women aged 15-49 who were either permanent residents of the selected households

or visitors who stayed in the household the night before the survey were eligible to be

interviewed. In the subsample of households selected for the male survey, anaemia testing

was performed among eligible women who consented to being tested. Households that

were successfully interviewed were 26361, yielding a response rate of 99 percent. Eligible

women that were successfully interviewed were 24562, yielding a response rate of 98

percent.

Study used 21,935 reproductive women from 15-49 years who had haemoglobin level known

to assess performance of robust regression methods and diagnostic statistics in linear

models. In this study, a woman’s body mass index, her education, place of redicence,

fertility rate, wealth, duration of pregnancy (if pregnanct), distance to health facility,
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and age were used as covariates to describe Hb levels. The mean, quantile, and robust

regression models presented in Section 2.2 were fitted on the data and efficiency of each

model and its sensistivity to outliers analysed. Data cleaning and analysis were done

using STATA 17.0, the code is provided in Appendix 1.
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CHAPTER FOUR

RESULTS

4.1 Introduction

This chapter contains results and interpretation of the simulation study and maternal

anaemia data observing the performance of the three methods interms of efficiency (model

estimates quality) and effectiveness (outlier and influential points detection). In these

analyses, the level of significance was 0.05. Hence, all null hypotheses were rejected if the

p-value of the test was less than 0.05. This section begins by presenting results of the

simulation study. The study further analyzed maternal anaemia data from the Malawi

DHS 2015-16 for 21,935 reproductive women aged 15-49 who had known haemoglobin

levels.

4.2 Simulation results

4.2.1 Simulation results on estimates and standard errors of each model

The results in Table 1 indicated that in unperturbed data, all the three models showed rel-

atively similar and accurate estimates with small standard errors. However, for perturbed

data, the conventional linear model with maximum likelihood or least squares estimation

showed significantly higher standard errors, on average, indicating high sensitivity to out-

lier observations in the data. In contrast, the robust methods like M-, MM-, S-, and

LTS- estimators maintained more stable estimates with lower standard errors even in the

presence of outliers. This demonstrated that the robust regression methods were more

resistant to the influence of the outlier observations in the parameter estimates than the
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conventional linear model and the quantile model. Quantile regression models (Q25, Q50,

Q75, Q90) also showed varying degrees of robustness, with higher quantiles being more

affected by perturbations and the 25th percentile model having smallest standard errors.

Further, much reduced standard errors were observed in large samples of 500 observations

for each model, while the trend of estimates remained similar between the models.

Table 1: Average parameter estimates and standard errors in 100 simulations for the
robust, quantile, and mean regression models, with and without perturbations.

Unperturbed data Perturbed data
n Model β̂0(SE) β̂1(SE) β̂2(SE) β̂0(SE) β̂1(SE) β̂2(SE)

50 LM-MLE 2.08 (0.85) 0.72 (0.29) 0.89 (0.12) 2.78 (35.90) 3.10 (12.5) 3.03 (2.53)
Q25 1.41 (1.30) 0.70 (0.45) 0.91 (0.10) 1.75 (1.51) 0.70 (0.53) 0.90 (0.11)
Q50 2.02 (1.10) 0.71 (0.40) 0.90 (0.14) 2.43 (41.35) 0.75 (14.48) 0.90 (2.91)
Q75 2.66 (1.37) 0.75 (0.45) 0.90 (0.14) 11.82 (101.3) 4.56 (35.88) 4.45 (7.52)
Q90 3.21 (1.37) 0.71 (0.48) 0.90 (0.15) 18.29 (65.53) 6.23 (23.04) 9.10 (5.06)
Robust M 2.08 (0.84) 0.70 (0.32) 0.90 (0.11) 2.96 (2.21) 0.80 (0.74) 0.90 (0.16)
Robust MM 2.03 (0.96) 0.68 (0.33) 0.91 (0.11) 2.15 (0.96) 0.69 (0.33) 0.90 (0.08)
Robust S 1.98 (1.24) 0.75 (0.39) 0.90 (0.12) 2.09 (1.34) 0.71 (0.48) 0.90 (0.09)
Robust LTS 1.99 () 0.72 () 0.92 () 2.19 () 0.69 () 0.89 ()

500 LM-MLE 2.07 (0.28) 0.71 (0.12) 0.90 (0.02) 0.84 (10.86) 2.89 (3.77) 3.30 (0.78)
Q25 1.40 (0.34) 0.71 (0.12) 0.9 (0.03) 1.58 (0.42) 0.72 (0.21) 0.91 (0.03)
Q50 2.10 (0.33) 0.68 (0.12) 0.90 (0.03) 2.50 (0.50) 0.70 (0.18) 0.90 (0.04)
Q75 2.71 (0.36) 0.7 (0.13) 0.90 (0.03) -0.41 (52.42) 4.56 (18.24) 4.28 (3.88)
Q90 3.30 (0.45) 0.71 (0.16) 0.91 (0.05) 10.33 (18.91) 7.18 (6.64) 10.01 (1.37)
Robust M 2.07 (0.26) 0.72 (0.11) 0.90 (0.02) 2.75 (0.57) 0.72 (0.20) 0.90 (0.04)
Robust MM 2.07 (0.28) 0.70 (0.10) 0.90 (0.02) 2.07 (0.32) 0.70 (0.12) 0.89 (0.04)
Robust S 2.09 (0.52) 0.68 (0.18) 0.90 (0.08) 2.06 (0.41) 0.71 (0.14) 0.89 (0.04)
Robust LTS 2.12 () 0.68 () 0.90 () 2.11 () 0.69 () 0.90 ()

4.2.2 Bias of regression coefficient estimates from each model

The bias results in Table 2 showed that in unperturbed data, all the models had relatively

similar and low bias of estimations. However, when the outliers were introduced in the

sample, the robust regression methods of all types and the first and second quartile (Q25

and Q50) models produced best estimates with smallest bias. The biases were large in
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linear and 75th and 90th percentile models for the data that contained outliers.

Table 2: Bias of estimation for regression parameters using the robust, quantile, and mean
models based on 100 simulations with and without perturbations.

Unperturbed data Perturbed data
n Model bias(β̂0) bias(β̂1) bias(β̂2) bias(β̂0) bias(β̂1) bias(β̂2)

50 LM-MLE -0.02 0.02 -0.01 0.68 2.40 2.13
Q25 -0.69 0.00 0.01 -0.35 0.00 0.00
Q50 -0.08 0.01 0.01 0.33 0.05 0.00
Q75 0.56 0.05 0.00 9.72 3.86 3.55
Q90 1.11 0.01 0.00 16.19 5.53 8.20
Robust-M -0.02 0.00 0.00 0.86 0.10 0.00
Robust-S -0.12 0.05 0.00 -0.01 0.01 0.00
Robust-MM -0.07 -0.02 0.01 0.05 0.01 0.00
Robust-LTS -0.11 0.02 0.02 0.09 -0.01 -0.01

500 LM-MLE -0.03 0.01 0.00 1.26 2.19 2.40
Q25 -0.70 0.01 0.00 -0.52 0.02 0.01
Q50 0.00 -0.02 0.00 0.40 0.00 0.00
Q75 0.61 0.00 0.00 -2.51 3.86 3.38
Q90 1.20 0.01 0.01 8.23 6.48 9.11
Robust-M -0.03 0.02 0.00 0.65 0.02 0.00
Robust-S -0.01 -0.02 0.00 -0.04 0.01 -0.01
Robust-MM -0.03 0.00 0.00 -0.03 -0.01 -0.01
Robust-LTS 0.02 -0.02 0.00 0.01 -0.01 0.00

4.2.3 Outlier detection by each model in 100 simulations with perturbed first

5 observations

The simulation results in Table 3 showed that the outlier residuals of all the models

performed equally in detecting the five outlier observations in the data set with success

rates close to 100%. There was one exception for the residual of the 90th percentile model

in small sample sizes of 50 in which it had success rates of less than 15% for all the five

outliers.
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Table 3: Number of times out of 100 simulations an outlier observation has been detected
by a residual of robust, quantile, and mean regression models, perturbed case.

No. of times outlier is detected
n Model obs.1 obs.2 obs.3 obs.4 obs.5

50 LM-MLE 98 98 95 97 97
Q25 100 100 100 100 100
Q50 100 100 100 100 100
Q75 100 100 100 100 100
Q90 13 12 11 11 13
Robust-M 99 100 100 100 100
Robust-S 99 100 100 100 100
Robust-MM 99 100 100 100 100
Robust-LTS 99 100 100 100 100

500 LM-MLE 100 100 100 99 99
Q25 100 100 100 99 99
Q50 100 100 100 99 99
Q75 100 100 100 99 99
Q90 99 100 100 99 99
Robust-M 100 100 100 99 99
Robust-S 100 100 100 99 99
Robust-MM 100 100 100 99 99
Robust-LTS 100 100 100 99 99

4.3 Maternal anaemia data results

subsectionMaternal anaemia reasults for the 2015-16 MDHS data This section presents

the regression estimates and outlier residual results for each of the models reviewed in

Section 2. The women data had average Haemoglobin level of 12.53 g/dl, and standard

deviation of 1.74 g/dl. The Hb range was 23 g/dl minus 2 g/dl. The Hb data were skewed

to the left, with a coefficient of -0.52. Thus, there were more Hb measurements below

average than above it.
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4.3.1 Regression model estimates results for the maternal anaemia data

The results in Table 4 showed that the directions of effect sizes were generally similar

across all the models. However, the sizes of standard errors were smallest in the lin-

ear, 50th percentile, M- and MM- robust regression models. The standard errors were

largest in the 25th percentile, 75th percentile, 90th percentile, and robust S-estimator

models. The LTS- model does not process standard errors. Further, the model-based

average Haemoglobin (Hb) level in women was 13.7 g/dl using M- and MM-estimator

robust models, and 12.8 g/dl using the 25th percentile model. Thus, the 25th percentile

model intercept was consistent with the raw data average Hb estimate.

The results also showed that staying in rural area increased Hb levels by 0.13 compared

to urban area. Having primary and secondary education increased Hb levels by 0.24 and

0.19, respectively compared to no education. The Hb levels were not significantly different

between Women with higher education and those with no education. Furthermore, a unit

increase in age of pregnancy significantly reduced Hb levels by 0.31 g/dl. In addition,

having normal, overweight, and obese body mass index increased Hb by 0.27, 0.42, and

0.62 g/dl, respectively. Women living in rich households had reduced Hb levels by 0.07

g/dl compared to those from poor household, but there was no difference in Hb between

women from middle and poor households. It was also shown that women drinking from

safe water sources had reduced Hb by 0.10 g/dl compared to those using unsafe sources.

The fertility rate, distance from clinic, and age of a woman were not associated with Hb

levels.
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Table 4: Regression parameter estimates by the robust, quantile, and mean regression
models from 2015-16 MDHS.

Mean Reg Quantile Reg
Covraiate β̂(SE, pv) β̂Q25 (SE, pv) β̂Q50 (SE, pv) β̂Q75 (SE, pv) β̂Q90 (SE, pv)

Intercept 13.6 (0.14, <0.001) 12.8 (0.20, <0.001) 14.2 (0.16, <0.001) 14.5 (0.19, <0.001) 16.05 (0.19, <0.001)
Residence

Urban*
Rural 0.07 (0.04, 0.047) 0.07 (0.05, 0.215) 0.30 (0.04, <0.001) 0.06 (0.05, 0.260) 0.05 (0.05, 0.317)

Education
None*
Primary 0.23 (0.03, <0.001) 0.30 (0.04, <0.001) 0.20 (0.04, <0.001) 0.22 (0.04, <0.001) 0.25 (0.04, <0.001)
Secondary 0.16 (0.04, <0.001) 0.17 (0.07, 0.011) 0.20 (0.05, <0.001) 0.23 (0.06, <0.001) -0.50 (0.15, 0.001)
Higher -0.20 (0.11, 0.075) 0.07 (0.17, 0.688) -0.00 (0.13, 1.00) -0.26 (0.16, 0.101) 1.10 (0.97, 0.256)

Fertility Rate -0.003 (0.01, 0.635) -0.00 (0.01, 1.00) -0.00 (0.01, 1.00) 0.01 (0.01, 0.243) -0.05 (0.01, <0.001)
Pregnancy Dur -0.29 (0.02, <0.001) -0.30 (0.03, <0.001) -0.40 (0.03, <0.001) -0.27 (0.03, <0.001) -0.40 (0.03, <0.001)
Clinic Distance

Big problem*
No problem -0.04 (0.02, 0.072) -0.07 (0.04, 0.063) 95.4 (0.03, 1.00) 0.08 (0.03, 0.017) -0.05 (0.03, 0.134)

BMI
Underweight*
Normal 0.38 (0.05, <0.001) 0.30 (0.08, <0.001) 0.20 (0.06, 0.001) 0.27 (0.07, <0.001) 0.40 (0.07, <0.001)
Overweight 0.51 (0.05, <0.001) 0.47 (0.08, <0.001) 0.30 (0.06, <0.001) 0.38 (0.07, <0.00) 0.45 (0.07, <0.001)
Obese 0.52 (0.40, 0.199) 0.80 (0.09, <0.001) 0.48 (0.08, <0.001) 0.69 (0.58, 0.235) 0.65 (0.08, <0.001)

Wealth Index
Poor*
Middle -0.03 (0.03, 0.328) -0.07 (0.05, 0.151) -0.10 (0.04, 0.007) -0.08 (0.04, 0.083) -0.15 (0.04, 0.001)
Rich -0.09 (0.03, 0.002) -0.10 (0.04, 0.020) -0.00 (0.03, 1.00) -0.05 (0.04, 0.196) -0.05 (0.04, 0.210)

Age group
15-24*
25-49 -0.09 (0.04, 0.038) -0.17 (0.06, 0.005) -0.10 (0.05, 0.036) -0.02 (0.06, 0.671) 0.20 (0.06, <0.001)

Water soucre
Unsafe*
Safe -0.10 (0.03, 0.002) -0.20 (0.05, <0.001) -0.10 (0.04, 0.012) -0.03 (0.05, 0.480) -0.05 (0.04, 0.282)

Mean Reg Robust Reg
Covraiate β̂(SE, pv) β̂M (SE, pv) β̂S(SE, pv) β̂MM (SE, pv) β̂LTS(SE, pv)

Intercept 13.6 (0.14, <0.001) 13.7 (0.16, 0.002) 15.0 (0.37, <0.001) 13.9 (0.19, <0.001) 14.7 ()
Residence

Urban*
Rural 0.07 (0.04, 0.047) 0.13 (0.04, 0.001) 0.43 (0.06, <0.001) 0.19 (0.04, <0.001) 0.71 ()

Education
None*
Primary 0.23 (0.03, <0.001) 0.24 (0.03, <0.001) 0.18 (0.04, <0.001) 0.23 (0.03, <0.001) 0.12 ()
Secondary 0.16 (0.04, <0.001) 0.19 (0.04, <0.001) 0.24 (0.07, <0.001) 0.22 (0.05, <0.001) 0.24 ()
Higher -0.20 (0.11, 0.075) -0.17 (0.11, 0.120) -0.21 (0.13, 0.094) -0.15 (0.11, 0.193) -0.14 ()

Fertility Rate -0.003 (0.01, 0.635) -0.002 (0.01, 0.665) 0.01 (0.01, 0.184) -0.001 (0.01, 0.858) -0.001 ()
Pregnancy Dur -0.29 (0.02, <0.001) -0.31 (0.03, <0.001) -0.56 (0.07, <0.001) -0.34 (0.03, <0.001) -0.60 ()
Clinic Distance

Big problem*
No problem -0.04 (0.02, 0.072) -0.001 (0.02, 0.973) 0.16 (0.04, <0.001) 0.05 (0.02, 0.062) 0.31 ()

BMI
Underweight*
Normal 0.38 (0.05, <0.001) 0.27 (0.05, <0.001) 0.08 (0.07, 0.274) 0.17 (0.05, 0.001) 0.49 ()
Overweight 0.51 (0.05, <0.001) 0.42 (0.05, <0.001) 0.19 (0.08, 0.012) 0.32 (0.05, <0.001) 0.41 ()
Obese 0.75 (0.06, <0.001) 0.62 (0.06, <0.001) 0.33 (0.08, <0.001) 0.51 (0.06, <0.001) 0.60 ()

Wealth Index
Poor*
Middle -0.03 (0.03, 0.328) -0.03 (0.03, 0.288) 0.06 (0.05, 0.212) -0.02 (0.03, 0.525) 0.03 ()
Rich -0.09 (0.03, 0.002) -0.07 (0.03, 0.016) 0.12 (0.04, 0.004) -0.02 (0.03, 0.426) 0.01 ()

Age group
15-24*
25-49 -0.09 (0.04, 0.038) -0.07 (0.04, 0.052) -0.09 (0.06, 0.131) -0.06 (0.04, 0.155) 0.004 ()

Water soucre
Unsafe*
Safe -0.10 (0.03, 0.002) -0.10 (0.03, 0.002) -0.12 (0.05, 0.007) -0.10 (0.03, <0.001) -0.23 ()69



4.3.2 Assessment of outliers in the women Hb data

The box plots given in Figure 1 for the residuals of the applied models showed that all

the methods consistently detected more outliers on the left side of the median value than

the right. This confirmed that the Hb data were left-skewed, with some women in Malawi

having extremely low Hb levels than the average (or being anaemic). This also explains

why the 25th percentile model produced average Hb value that was consistent with the

raw data estimate, as the model considered a group of women that were anaemic. The

data inspection indicated that the models identified between 400 and 500 outliers in the

data. Over half of the outliers were commonly detected by the models.

Figure 1: Plots of the outlier residual for each model using the women Hb data from
2015-16 MDHS.

A further inspection of the Hb data showed all the models detected between 400 and
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500 outlier observations in the data, except the LTS which had over 1000 outliers, see

Table 5. A considerable amount of the detected outliers were commonly identified by all

the models. A large proportion of the outlier observations were those women who had

extremely low Hb levels far from the normal range in the population.

Table 5: Exact common and uncommon outlier women ids and their residual signs
detected by the diagnostics for robust, quantile, and mean regression models, 2015-16
MDHS.

Woman ID LM-MLE Q25 Q50 Q75 Q90 Robust-M Robust-MM Robust-S Robust-LTS

102 240 2 1 -ve -ve -ve -ve -ve -ve -ve -ve -ve
321 213 2 1 -ve -ve -ve -ve -ve -ve -ve -ve +ve
321 213 2 2 -ve -ve -ve -ve -ve -ve -ve -ve +ve
321 213 2 3 -ve -ve -ve -ve -ve -ve -ve -ve +ve
397 163 2 1 -ve -ve -ve -ve -ve -ve -ve -ve +ve
397 163 2 2 -ve -ve -ve -ve -ve -ve -ve -ve +ve
479 185 2 1 +ve +ve +ve +ve +ve +ve +ve +ve -ve
479 185 2 2 +ve +ve +ve +ve +ve +ve +ve +ve -ve
479 185 2 3 +ve +ve +ve +ve +ve +ve +ve +ve -ve
612 89 1 1 -ve -ve -ve -ve -ve -ve -ve -ve -ve
612 89 1 2 -ve -ve -ve -ve -ve -ve -ve -ve -ve
612 89 1 3 -ve -ve -ve -ve -ve -ve -ve -ve -ve
612 89 1 4 -ve -ve -ve -ve -ve -ve -ve -ve -ve
638 203 2 1 -ve -ve -ve -ve -ve -ve -ve -ve -ve
638 203 2 2 -ve -ve -ve -ve -ve -ve -ve -ve -ve
638 203 2 3 -ve -ve -ve -ve -ve -ve -ve -ve -ve
681 287 1 1 -ve -ve -ve -ve -ve -ve -ve -ve -ve
681 287 1 2 -ve -ve -ve -ve -ve -ve -ve -ve -ve
681 287 1 3 -ve -ve -ve -ve -ve -ve -ve -ve -ve
681 287 1 4 -ve -ve -ve -ve -ve -ve -ve -ve -ve
681 287 1 5 -ve -ve -ve -ve -ve -ve -ve -ve -ve
681 287 1 6 -ve -ve -ve -ve -ve -ve -ve -ve -ve
743 63 2 1 -ve -ve -ve -ve -ve -ve -ve -ve -ve
743 63 2 2 -ve -ve -ve -ve -ve -ve -ve -ve -ve
743 63 2 3 -ve -ve -ve -ve -ve -ve -ve -ve -ve
... ... ... ... ... ... ... ... ... ...

Total outliers 414 429 452 425 390 409 433 467 1133
Total -ve outliers 363 363 390 372 349 358 379 394 769
Total +ve outliers 51 66 62 53 41 51 54 73 364

71



CHAPTER FIVE

DISCUSSION, CONCLUSION AND

RECOMMENDATION

5.1 Discussion

This study aimed to assess performance of mean, quantile, and robust regression methods

in analysing correlates of women Haemoglobin levels in Malawi using simulations and real

data applications. Through simulations, the study observed that each model’s residual

had the same capacity to detect the outliers, when they were present in a data set. This

is the case since a residual statistic is defined within the assumptions framework of the

respective model, hence it has to effectively track the unusual measurements in the model

(Kaombe & Manda, 2023b; Kaombe, 2024). Further, it was shown that the linear, quan-

tile and robust regression models performed with similar biases, in samples that had no

outliers. But, in the presence of outlier observations, the robust regression methods and

quantile model at 25th and 50th percentile produced best estimates that had smallest

bias. The linear, 75th and 90th percentile models produced large bias estimates in data

that had outliers. The presence of outliers in data usually skew the data, leading to

violation of the normality assumptions of the linear model errors upon which the least

squares and maximum likelihood estimation methods are based, hence causing the model

to produce biased estimates (Sinha, 2004; Pérez et al., 2014). The robust and quantile re-

gression methods bipass these strict assumptions to make the estimation through flexible

nonparametric procedures that involve ranks of observations instead of their actual mea-

surements or use a fraction of contaminated-free data to make estimates, and overcome
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the impact of extremety of the measurements in the regression estimates (Mei Ling Huang

& Tashnev, 2015; Geraci & Bottai, 2014; Yuen & Ortiz, 2017; Rousseeuw & Hubert, 2011).

These results consolidates evidence that the supremacy of robust regression methods is in

withstanding the impact of the outlier observation in the regression parameter estimates,

and not in the detection of outliers themselves as observed in previous studies (Rousseeuw

& Hubert, 2018, 2011; Santos, 2020).

When applied to women Haemoglobin data, the residuals for all the models reported

considerable amount of outliers to the women’s Hb data, most of whom were women

who had extremely low Hb levels. This was consistent with the simulation results that

showed that the diagnostic statistics for the three models had similar sensitivity to outlier

observations in the data (Santos, 2020). The application showed that the directions of

effect sizes were generally similar across the models. But, the linear, robust M-estimator,

and MM-estimator models produced estimates with smallest standard errors. Again,

these results were consistent with the simulation findings and reflected the ability of

robust models to deal with outliers to get reliable estimates and the power of maximum

likelihood-based estimates from linear models in large sample cases (Rousseeuw & Hubert,

2018).

The real data showed that residing in rural area, higher body mass index, having primary

and secondary education was linked to high Hb levels. The body mass index is function

of few other body mechanisms such as weight, height, fats, which are related to blood

quantity in the body, which could be the reason this study, like others done previously,

observed a positive association between women body mass index and Haemoglobin level

(Mocking et al., 2018; Kamruzzaman, 2021). A woman’s educational attainment is a
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critical tool for nutritional awareness, and hence its link with Haemoglobin status of the

woman (Adediran et al., 2011). The low likelihood of maternal anaemia in women from

rural parts of Malawi is consistent with studies done in other low and middle income

countries, such as South East Asia, but more research is needed to establish the reasons

for the trend (Rahman et al., 2021).

In contrast, higher age of pregnancy, drinking from safe water sources, and living in a rich

household were associated with low Hb levels. The low Hb levels in the second and third

trimesters of pregnancy have been reported in many studies and it reflects the demand for

more iron mineral by the growing baby (Ray et al., 2020; Churchill et al., 2019). Although

drinking from borehole water is classified as safe, previous research observed that local

communities in Malawi do not treat water from boreholes to make it safe for drinking

(Mkwate et al., 2017). Over half of the women in this study used tube well or borehole

as source of drinking water. This could reflect low Hb levels observed in women drinking

from safe water sources, as the water might lack appropriate nitrates (Kothari et al.,

2019; Westgard et al., 2021; Jana et al., 2022). The result of low Hb levels in women from

rich household is uncommon as previous research established positive association between

family wealth and Hb levels, since wealthier households could afford proper nutrition

(Abate et al., 2021; Awoleye et al., 2022). These factors collectively highlight the complex

interplay between socio-economic status, education, nutrition, and biological factors in

determining maternal anaemia outcomes in Malawi. Addressing these issues requires a

multifaceted approach.
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5.2 Conclusion

This study evaluated the effectiveness and of robust, quantile, and mean regression models

in managing outlier data related to haemoglobin levels in women in Malawi. Simulations

revealed that all three models had similar outlier detection rates, except 90th quantile

model in small sample sizes. However, robust and some lower quantile (25th and 50th)

regression methods provided more accurate estimates in samples with outliers. When

applied to women’s haemoglobin data, the fixed effect estimates were consistent across

models, with the linear, M-estimator, and MM-estimator models yielding the smallest

standard errors in large samples. The average haemoglobin (Hb) level for women in

Malawi was 12.8 g/dl, with a raw standard deviation of 1.74 g/dl. Women in rural areas,

those with higher body mass index, and those with primary and secondary education had

significantly higher Hb levels, while increased pregnancy age, drinking from safe water

sources, and living in wealthy households were associated with lower Hb levels. These

findings are supported by recent studies that emphasize the stability and reliability of

robust regression methods in various data conditions

It was further observed that the women Haemoglobin data had a considerable amount

of outliers (models detected a range of 400 to 500), whom the majority were women

with extreme low Haemoglobin levels. Thus the Haemoglobin level data in Malawi were

highly skewed to the left with more unusual values at the tip below te average. Such

that using mean regression alone might not be sufficient. Quantile regression can provide

insights across different points in the haemoglobin distribution, while robust regression can

handle outliers effectively. Combining these methods offers a comprehensive approach to

accurately model the non-linear relationship between predictors and haemoglobin levels.
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The study generates strong evidence of the burden of maternal anaemia in Malawi based

on outlier residuals of three different statistical modelling methods that were engaged

in this study. Future research should consider using mixed-effects regression models

to account for the clustering of women in their neighborhoods while analyzing outlier

haemoglobin levels. This approach could offer a more comprehensive understanding of

the factors influencing haemoglobin levels and help design more effective interventions.

Overall, the study highlights the effectiveness of robust and quantile regression methods in

handling outlier data and provides valuable insights into the factors affecting haemoglobin

levels in women in Malawi.

5.3 Recommendations

The study recommends the use of robust regression methods to improve the modelling of

women Haemoglobin data in Malawi. It also suggests implementing targeted interventions

to boost haemoglobin levels, especially among expectant mothers in the second and third

trimester and other outlier groups of women in society. These findings further suggest

that triangulating a variety of statistical methods to analyse Haemoglobin data will help

in concretising evidence of the burden of maternal anaemia in sub-Saharan Africa.

5.4 Study Limitation

The study analyzed maternal anaemia using Malawi’s 2015-16 Demographic and Health

Survey (DHS) data encountered two primary limitations. Firstly, missing values in criti-

cal variables (such as current pregnant duration, water source, and BMI). These missing

data points may have introduced bias and affected the accuracy of statistical analyses.

Secondly, due to a small sample size, generalizing the study findings to the entire Malawi
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population is a challenge. Although mean, quantile, and robust regression methods effec-

tively handle outliers and provide better estimates, in modelling of anaemia data might

not be as clinically intuitive as logistic regression. This is so because mean, quantile,

and robust regression use haemoglobin levels and hence fails to effectively captured the

binary nature of anaemia diagnosis (i.e., anaemic vs. non-anaemic). However, quantile

and robust models fitted well due to the skewness of the haemoglobin level data used to

categorize the anaemia condition.
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Appendices

Appendix 1: STATA Codes

*SIMULATING DATA: CASE OF UNPERTURBED DATA with sample size of 50 *

*****************************************************************

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Sim_unpertubed50"

clear all

set seed 12345 // Set a seed for reproducibility

forvalues i = 1/100 {

clear

set obs 50

gen group = `i'

gen id =_n

gen x1 = rnormal(2.3,0.5)

gen x2 = rnormal(8,2.4)

gen error = rnormal(0,1)

gen y = 2.1 + 0.7*x1 + 0.9*x2 + error

// Save each sample to a separate file

save sim_unpertubed50data`i'.dta, replace

}

* SIMULATING DATA - CASE OF PERTURBED first 5 observations of size 500 *

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Sim_pertubed500"

clear all

set seed 12345 // Set a seed for reproducibility

forvalues i = 1/100 {

93clear
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set obs 500 // Set number of observations to 500

gen group = `i' // Create the group variable

gen id =_n // Generate normal data

gen x1 = rnormal(2.3,0.5)

gen x2 = rnormal(8,2.4)

gen error = rnormal(0,1)

gen y = 2.1 + 0.7*x1 + 0.9*x2 + error

// Introduce random outliers for the first 5 observations

set seed `= 12345 + `i'' // Ensure reproducibility with varying seed

replace error = rnormal(-7.8,22.1) in 1/5 // introducing outlier in error term

// Recalculate y for the first 5 observations with outliers

replace y = 15 + 6*x1 + 10*x2 + error in 1/5 // b0, b1 and b2 perturbed to 15, 6 and 10

respectively

save sim_pertubed500data`i'.dta, replace // Save each sample to a separate file

}

* SIMULATING DATA - A CASE OF PERTURBED first 125 observations of size 500 *

****************************************************************************

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\half_sim_perturbed500"

clear all

set seed 12345 // Set a seed for reproducibility

forvalues i = 1/100 {

clear

set obs 500 // Set number of observations to 500

gen group = `i' // Create the group variable

gen id =_n // Generate normal data

gen x1 = rnormal(2.3,0.5)

gen x2 = rnormal(8,2.4)

9495
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replace y = 15 + 6*x1 + 10*x2 + error in 1/125 // b0, b1 and b2 perturbed to 15, 6 and 10

respectivel

gen error = rnormal(0,1)

gen y = 2.1 + 0.7*x1 + 0.9*x2 + error

// Introduce random outliers for the first 250 observations

set seed `= 12345 + `i'' // Ensure reproducibility with varying seed

replace error = rnormal(-7.8,22.1) in 1/125 // introducing outlier in error term

// Recalculate y for the first 5 observations with outliers

y

save half_sim_pertubed500data`i'.dta, replace

// Save each sample to a separate file

}

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1. THESIS\Project\Data_analysis"

****************************************************************************

* SIMULATION STUDY DATA ANALYSIS - pertubed first 5 observations for n=500

****************************************************************************

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Sim_pertubed500"

*A CASE OF LINEAR REGRESSION MODEL*****

capture log using Maternal_anaemiaThesisOLS500pertubed.log, replace

// Load the 100 replicated datasets

forval i = 1/100 {

use sim_pertubed500data`i'.dta, clear

regress y x1 x2 // Fit a linear regression model

di "Running regression for dataset number `i'" // Display the dataset number in the log

predict yhat

gen residuals = y - yhat

gen squared_residuals = residuals^2
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sum squared_residuals, meanonly

display sqrt(r(mean)) // Calculate RMSEgen abs_residuals = abs(residuals

96

)

sum abs_residuals, detail

gen outlier = abs_residuals > r(p75) + 1.5 * (r(p75) - r(p25))

list group id if outlier

// List outliers

}

Capture log close

**A CASE OF ROBUST MODELS - LTS-estimator**********

capture log using Maternal_anaemiaThesisLTSRob500pertubed.log, replace

//Load the 100 replicated datasets

forval i = 1/100 {

use sim_pertubed500data`i'.dta, clear

robreg lts y x1 x2 // m-robust modeL

di "Running regression for dataset number `i'" // Display the dataset number in the log

predict yhat

gen residuals = y - yhat

gen squared_residuals = residuals^2

sum squared_residuals, meanonly

display sqrt(r(mean)) // Calculate RMSE

gen abs_residuals = abs(residuals)

sum abs_residuals, detail

gen outlier = abs_residuals > r(p75) + 1.5 * (r(p75) - r(p25))

list group id if outlier

}

capture log close

*********************************************************

* SIMULATED DATA ANALYSIS - Unpertubed for n=50
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*********************************************************

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Sim_unpertubed50"**QR MODELS - 25th Quantile

Regression**********

capture log using Maternal_anaemiaThesisQ25R50unpertubed.log, replace

//Load the 100 replicated datasets

forval i = 1/100 {

use sim_unpertubed50data`i'.dta, clear

qreg y x1 x2, quantile(0.25) // For 25th percentile

di "Running regression for dataset number `i'"

predict yhat

gen residuals = y - yhat

gen squared_residuals = residuals^2

sum squared_residuals, meanonly

display sqrt(r(mean))

gen abs_residuals = abs(residuals)

sum abs_residuals, detail

gen outlier = abs_residuals > r(p75) + 1.5 * (r(p75) - r(p25))

list group id if outlier

}

capture log close

* SIMULATION STUDY DATA ANALYSIS - Unpertubed for n=500

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Sim_unpertubed500"

**CASE OF ROBUST MODELS - MM-estimator**********

capture log using Maternal_anaemiaThesisMMRob500unpertubed.log, replace

//Load the 100 replicated datasets

forval i = 1/100 {
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use sim_unpertubed500data`i'.dta, clear

robreg mm y x1 x2 // m-robust model

di "Running regression for dataset number `i'"

predict yhat

5gen residuals = y - yhat

gen squared_residuals = residuals^2

sum squared_residuals, meanonly

display sqrt(r(mean))

gen abs_residuals = abs(residuals)

sum abs_residuals, detail

gen outlier = abs_residuals > r(p75) + 1.5 * (r(p75) - r(p25))

list group id if outlier

}

capture log close

* SIMULATION STUDY DATA ANALYSIS - pertubed 25% (175 observations) in n=500

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\half_sim_perturbed500"

**CASE OF ROBUST MODELS - M-estimator**********

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\half_sim_perturbed500"

capture log using MRob500_half_pertubed.log, replace

//Load the 100 replicated datasets

forval i = 1/100 {

use half_sim_pertubed500data`i'.dta, clear

robreg m y x1 x2 // m-robust model

di "Running regression for dataset number `i'"

predict yhat

gen residuals = y - yhat
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gen squared_residuals = residuals^2

sum squared_residuals, meanonly

display sqrt(r(mean))

}

6capture log close

* SIMULATION STUDY DATA ANALYSIS - pertubed 25% (13 observatiobs) in n=50

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\half_sim_perturbed50"

**CASE OF QR MODELS - 75th Quantile Regression**********

capture log using Q75R50_half_pertubed.log, replace

//Load the 100 replicated datasets

forval i = 1/100 {

use half_sim_pertubed50data`i'.dta, clear

qreg y x1 x2, quantile(0.75) // For 75th percentile

di "Running regression for dataset number `i'"

predict yhat

gen residuals = y - yhat

gen squared_residuals = residuals^2

sum squared_residuals, meanonly

display sqrt(r(mean))

}

capture log close

*******************************************************

***** MATERNAL ANAEMIA DATA CLEANING *

quietly{

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1. THESIS\Project\Data_analysis"

use "dhs_data.DTA", clear

*Dropping respondents with missing hemoglobin data
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drop if hemoglobin_level10 == 996 | hemoglobin_level == 995 | hemoglobin_level == 994 |

hemoglobin_level == . //45,441 observations deleted, 21,935 kept

summarize hemoglobin_level, detail

*Recategorization of variables

7gen hemoglobin_level = hemoglobin_level10/10 //converting g/l to g/dl

gen bmi2 = bmi/100

gen bmi_category = 0 if inrange(bmi2, 0, 18.5)

replace bmi_category = 1 if inrange(bmi2, 18.5, 22.99)

replace bmi_category = 2 if inrange(bmi2, 23.0, 27.49)

replace bmi_category = 3 if inrange(bmi2, 27.5, 90)

replace bmi_category = . if bmi==9998 | bmi==9996 | bmi==9995 | bmi==9994

gen contraceptive_use = 1 if contraceptive == 1

replace contraceptive_use = 2 if contraceptive == 2

replace contraceptive_use = 3 if contraceptive == 3 | contraceptive == 4

gen wealth_index = 1 if wealth_level == 1 | wealth_level == 2

replace wealth_index = 2 if wealth_level == 3

replace wealth_index = 3 if wealth_level == 4 | wealth_level == 5

gen age_category = 0 if inrange(age, 15, 24)

replace age_category = 1 if inrange(age, 25, 49)

gen water_source = 0 if water_of_source == 32 | water_of_source == 42 | water_of_source == 43

| water_of_source == 51 | water_of_source == 96 //unprotected well, unprotected spring, surface

water, rain water and other water sources

replace water_source = 1 if water_of_source == 21 | water_of_source == 11 | water_of_source ==

12 | water_of_source == 13 | water_of_source == 14 | water_of_source == 31 | water_of_source

== 41 //borehole/Tube well, piped, protected well and spring

replace water_source = . if water_of_source == 97

*Labelling created values

label define bmi_group 0 "underweight" 1 "normal_weight" 2 "overweight" 3 "obese", modify

label values bmi_category bmi_group

label define women_age_group 0 "15-24" 1 "25-49", modify
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label values age_category women_age_group

label define h20source 0 "Unsafe water" 1 "Safe water"

label values water_source h20source

label define distancehc 1 "Big problem" 2 "No problem", modify

89

********Imputation of missing observations***************

codebook bmi_category age_category education_level distance_hc wealth_index water_source

residential_status contraceptive_use total_fertility_rate curr_preg_duration

***imputing missing values for continuous variables******

egen imp_curr_preg_duration = median(curr_preg_duration)

replace curr_preg_duration = imp_curr_preg_duration if curr_preg_duration==. // replacing

missing 20775 with median value = mdian(5)

***imputing missing values for categorical variables******

replace water_source = 1 if missing(water_source) //replacing 104 missing values with most

occuring category (Safe water)

replace bmi_category = 1 if missing(bmi_category) //replacing 58 missing values with most

occuring category (normal weight)

save "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\dhs_anaemia.dta", replace

}

**********************************************************************

*MATERNAL DATA ANALYSIS

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1. THESIS\Project\Data_analysis"

capture log using DHS_Maternal_anaemiaThesismodel_fit.log, replace

*

CASE OF LM/MLE

use "dhs_anaemia.dta", clear

regress hemoglobin_level i.residential_status i.education_level total_fertility_rate
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curr_preg_duration i.distance_hc i.bmi_category i.wealth_index i.age_category i.water_source

}

*Outlier detection

predict yhat

predict r, rstudent

// Identify outliers10

sum r, detail

display r(p75) + 1.5 * (r(p75) - r(p25)) //upper outlier cut off point

display r(p25) - 1.5 * (r(p75) - r(p25)) //lower outlier cut off point

gen outlier = r > r(p75) + 1.5 * (r(p75) - r(p25)) | r < r(p25) - 1.5 * (r(p75) - r(p25))

gen mle_out_sign = "+ve" if r > r(p75) + 1.5 * (r(p75) - r(p25))

replace mle_out_sign = "-ve" if r < r(p25) - 1.5 * (r(p75) - r(p25))

quietly {

graph box r, cwhisker marker(1, mlabel(caseid)) title(OLS/ML identified outliers)

graphregion(color(white))

graph save "Graph" "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource

Organization (MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Graph1_boxplot_OLS-Maternaldata.gph", replace

}

tab mle_out_sign //Outlier sign - MLE

quietly {

keep if outlier ==1

gen caseidbidx = caseid + " " + string(bidx)

save "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Anaemia_data\MLE_outliers.dta", replace

}

*

CASE OF QUANTILE REGRESSION MODELS

****Fitting 75th quantile regression model
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use "dhs_anaemia.dta", clear

qreg hemoglobin_level i.residential_status i.education_level total_fertility_rate curr_preg_duration

i.distance_hc i.bmi_category i.wealth_index i.age_category i.water_source, quantile(75)

predict yhat_q75

predict residuals, resid

gen squaredr_q75 = (residuals)^2

summarize squaredr_q75, meanonly11

display sqrt(r(mean))

estimates store qreg75

// Identify outliers

sum residuals, detail

display r(p75) + 1.5 * (r(p75) - r(p25)) //upper outlier cut off point

display r(p25) - 1.5 * (r(p75) - r(p25)) //lower outlier cut off point

gen outlier = residuals > r(p75) + 1.5 * (r(p75) - r(p25)) | residuals < r(p25) - 1.5 * (r(p75) - r(p25))

gen q75_out_sign = "+ve" if residuals > r(p75) + 1.5 * (r(p75) - r(p25))

replace q75_out_sign = "-ve" if residuals < r(p25) - 1.5 * (r(p75) - r(p25))

***Graphing the outliers

quietly{

graph box residuals, cwhisker marker(1, mlabel(caseid)) title(Q75 identified outliers)

graphregion(color(white))

graph save "Graph" "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource

Organization (MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Graph1_boxplot_Q75-Maternaldata.gph", replace

}

tab q75_out_sign //Outlier sign - Q75

quietly {

keep if outlier ==1

gen caseidbidx = caseid + " " + string(bidx)

save "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.
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THESIS\Project\Data_analysis\Anaemia_data\Q75_outliers.dta", replace

}

*

CASE OF ROBUST REGRESSION MODELS

****Fitting mm robust regression model***

use "dhs_anaemia.dta", clear

robreg mm hemoglobin_level i.residential_status i.education_level total_fertility_rate

curr_preg_duration i.distance_hc i.bmi_category i.wealth_index i.age_category

i.water_sourcepredict yhat_mm

predict residuals, resid

gen squaredr_mm = (residuals)^2

summarize squaredr_mm, meanonly

egen median_residuals = median(residuals)

display sqrt(r(mean))

estimates store mmrob

// Identify outliers

gen MAD_value = abs(residuals - median_residuals)

sum MAD_value, detail

gen std_residuals = 0.6745*residuals/r(p50)

sum std_residuals, detail

display r(p75) + 1.5 * (r(p75) - r(p25)) //upper outlier cut off point

display r(p25) - 1.5 * (r(p75) - r(p25)) //lower outlier cut off point

gen outlier = std_residuals > r(p75) + 1.5 * (r(p75) - r(p25)) | std_residuals < r(p25) - 1.5 * (r(p75)

- r(p25))

gen mmrob_out_sign = "+ve" if std_residuals > r(p75) + 1.5 * (r(p75) - r(p25))

replace mmrob_out_sign = "-ve" if std_residuals < r(p25) - 1.5 * (r(p75) - r(p25))

*Outliers graghing

quietly{

graph box std_residuals , cwhisker marker(1, mlabel(caseid)) title(MM-robust identified outliers)

graphregion(color(white))
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graph save "Graph" "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource

Organization (MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Graph1_boxplot_MM-Maternaldata.gph", replace

graph box std_residuals, cwhisker marker(1, mlabel(hemoglobin_level)) title(MM-robust identified

outliers)

}

tab mmrob_out_sign //Outlier sign - MM-robust

quietly {

12keep if outlier ==1

gen caseidbidx = caseid + " " + string(bidx)

save "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Anaemia_data\mmrob_outliers.dta", replace

}

quietly {

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Anaemia_data"

***Merging the outlier files****

use "LTSrob_outliers.dta", clear //use LTS robust outlier data

mmerge caseidbidx using "Srob_outliers.dta", missing(nomatch)

mmerge caseidbidx using "mmrob_outliers.dta", missing(nomatch)

mmerge caseidbidx using "mrob_outliers.dta", missing(nomatch)

mmerge caseidbidx using "q90_outliers.dta", missing(nomatch)

mmerge caseidbidx using "q75_outliers.dta", missing(nomatch)

mmerge caseidbidx using "q50_outliers.dta", missing(nomatch)

mmerge caseidbidx using "q25_outliers.dta", missing(nomatch)

mmerge caseidbidx using "mle_outliers.dta", missing(nomatch)

save "mw_anaemia_outliers.dta", replace

}
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cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Data_analysis\Anaemia_data"

use "mw_anaemia_outliers.dta", clear

////Outliers identified by each model

tab mle_out_sign

tab q25_out_sign

tab q50_out_sign

tab q75_out_sign

tab q90_out_sign

13tab mrob_out_sign

tab mmrob_out_sign

tab srob_out_sign

tab ltsrob_out_sign

///Common outliers analysis

gen common_outlier = 1 if !missing(mle_out_sign) & !missing(q25_out_sign)

& !missing(q50_out_sign) & !missing(q75_out_sign) & !missing(q90_out_sign)

& !missing(mrob_out_sign) & !missing(mmrob_out_sign) & !missing(srob_out_sign)

& !missing(ltsrob_out_sign)

//validating common outliers and checking signs

Preserve

drop if common_outlier==.

keep caseidbidx mle_out_sign q25_out_sign q50_out_sign q75_out_sign q90_out_sign

mrob_out_sign mmrob_out_sign srob_out_sign ltsrob_out_sign

order caseidbidx mle_out_sign q25_out_sign q50_out_sign q75_out_sign q90_out_sign

mrob_out_sign mmrob_out_sign srob_out_sign ltsrob_out_sign

export excel using "common_outliers.xlsx", firstrow(variables) replace

restore

cd "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1. THESIS\Project\Data_analysis"
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**Combined Box plots for the outliers

quietly {

graph combine "Graph1_boxplot_OLS-Maternaldata.gph" "Graph1_boxplot_Q25-

Maternaldata.gph" "Graph1_boxplot_Q50-Maternaldata.gph" "Graph1_boxplot_Q75-

Maternaldata.gph" "Graph1_boxplot_Q90-Maternaldata.gph" "Graph1_boxplot_M-

Maternaldata.gph" "Graph1_boxplot_MM-Maternaldata.gph" "Graph1_boxplot_S-

Maternaldata.gph" "Graph1_boxplot_LTS-Maternaldata.gph", title("Outliers detected by three

methods using maternal data") graphregion(color(white))

14graph export "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource

Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1. THESIS\Project\Full

thesis\Graph1boxplotsmaternaldata.png", replace

graph export "C:\Users\User\OneDrive - Malawi AIDS Counselling and Resource Organization

(MACRO)\Desktop\Other\MSc. Biost _ 2022\1.

THESIS\Project\Manuscripts\BoxPlots_Resid.png", as(png) name("Graph") replace

}

capture log close


